File size: 1,763 Bytes
0c4e1ba 60620c4 0c4e1ba 60620c4 0c4e1ba 60620c4 0c4e1ba 60620c4 0c4e1ba 60620c4 0c4e1ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import torch
import librosa
import numpy as np
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
from transformers import pipeline
# Title of the app
st.title("Emotion Recognition from Speech")
# Upload audio file
uploaded_file = st.file_uploader("Choose an audio file...", type=["wav"])
# Load the model and feature extractor
model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-er")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
classifier = pipeline("audio-classification", model="superb/hubert-large-superb-er")
if uploaded_file is not None:
# Load and preprocess audio file
speech, sr = librosa.load(uploaded_file, sr=16000, mono=True)
# Display audio player
st.audio(uploaded_file, format='audio/wav')
# Convert the audio file to the format expected by the classifier
inputs = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="np")
# Predict emotion using the model directly
with torch.no_grad():
inputs_pt = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs_pt).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
# Display the result from the model directly
st.write("Predicted Emotion:", labels[0])
# Alternatively, using the pipeline
inputs_ndarray = inputs["input_values"][0]
results = classifier(inputs_ndarray, top_k=5)
st.write("Top 5 Predicted Emotions:")
for result in results:
st.write(f"{result['label']}: {result['score']:.4f}")
|