File size: 5,006 Bytes
3c3eabb
 
5e02d67
3c3eabb
 
ac2cf21
e53c098
ac2cf21
91b7d20
 
ac2cf21
 
 
e53c098
 
ac2cf21
 
 
 
 
 
23a2527
402ae9a
23a2527
 
402ae9a
23a2527
 
402ae9a
23a2527
 
ac2cf21
 
 
d98629e
d1370fc
d98629e
 
 
1e55c78
d98629e
 
 
 
 
ac2cf21
 
 
 
 
 
 
 
282bfce
ac2cf21
edce2eb
ac2cf21
f1ef060
ac2cf21
 
fd9a520
 
ac2cf21
426c6f1
 
282bfce
 
 
7f3fb64
426c6f1
edce2eb
426c6f1
ac2cf21
 
 
 
 
 
426c6f1
ac2cf21
f1ef060
ac2cf21
 
 
 
 
a5e42e5
ade3ffb
e2ed84a
282bfce
 
ade3ffb
282bfce
a5e42e5
6fb202b
 
282bfce
ac2cf21
 
 
ade3ffb
 
b7c3808
 
 
 
 
 
 
 
282bfce
ade3ffb
 
 
 
 
 
ac2cf21
56a9c2e
ac2cf21
 
3c3eabb
402ae9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr

from transformers import AutoTokenizer, AutoModelForCausalLM
import numpy as np


MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"

my_token = "h"+"f"+"_"+"yFicBqLnJDUkEIpccOIKpYMecxvPoTiUpG"


if __name__ == "__main__":
    # Define your model and your tokenizer
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)  # was AutoModelForSeq2SeqLM in case of "google/flan-t5-base"
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model.config.pad_token_id = model.config.eos_token_id

    # Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
    probs_to_label = [
        (0.9, "p >= 90%"),
        (0.8, "p >= 80%"),
        (0.7, "p >= 70%"),
        (0.6, "p >= 60%"),
        (0.5, "p >= 50%"),
        (0.4, "p >= 40%"),
        (0.3, "p >= 30%"),
        (0.2, "p >= 20%"),
        (0.1, "p >= 10%"),
        (0.0, "p >= 00%")
    ]

    label_to_color = {
        "p >= 90%": "#11d9d2",
        "p >= 80%": "#11b4d9",
        "p >= 80%": "#11d9a0",
        "p >= 70%": "#11d954",
        "p >= 60%": "#4dd911",
        "p >= 50%": "#a0d911",
        "p >= 40%": "#d5d911",
        "p >= 30%": "#d9c111",
        "p >= 20%": "#d99a11",
        "p >= 10%": "#d97211",
        "p >= 00%": "#d91111"
    }

    def get_tokens_and_labels(prompt):
        """
        Given the prompt (text), return a list of tuples (decoded_token, label)
        """
        inputs = tokenizer([prompt], return_tensors="pt")
        outputs = model.generate(
            **inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True
        )
        # Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
        transition_proba = np.exp(transition_scores)
        # We only have scores for the generated tokens, so pop out the prompt tokens
        input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
        generated_ids = outputs.sequences[:, input_length:]
        generated_tokens = tokenizer.convert_ids_to_tokens(generated_ids[0])

        # Important: you might need to find a tokenization character to replace (e.g. "ฤ " for BPE) and get the correct
        # spacing into the final output ๐Ÿ‘ผ
        if model.config.is_encoder_decoder:
            highlighted_out = []
        else:
            input_tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
            highlighted_out = [(token.replace("โ–", " "), None) for token in input_tokens]
        # Get the (decoded_token, label) pairs for the generated tokens
        for token, proba in zip(generated_tokens, transition_proba[0]):
            this_label = None
            assert 0. <= proba <= 1.0
            for min_proba, label in probs_to_label:
                if proba >= min_proba:
                    this_label = label
                    break
            highlighted_out.append((token.replace("โ–", " "), this_label))

        return highlighted_out

    demo = gr.Blocks()
    with demo:
        gr.Markdown(
            """
            # ๐ŸŒˆ Color-Coded Text Generation ๐ŸŒˆ

            This is a demo of how you can obtain the probabilities of each generated token, and use them to
            color code the model output. Internally, it relies on
            [`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores),
            which was added in `transformers` v4.26.0.

            โš ๏ธ For instance, with the pre-populated input and its color-coded output, you can see that
            `google/flan-t5-base` struggles with arithmetics.

            ๐Ÿค— Feel free to clone this demo and modify it to your needs ๐Ÿค—
            """
        )

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt",
                    lines=3,
                    value=(
                        "Answer the following question by reasoning step-by-step. The cafeteria had 23 apples. "
                        "If they used 20 for lunch and bought 6 more, how many apples do they have?"
                    ),
                )
                button = gr.Button(f"Generate with {MODEL_NAME}")
            with gr.Column():
                highlighted_text = gr.HighlightedText(
                    label="Highlighted generation",
                    combine_adjacent=True,
                    show_legend=True,
                ).style(color_map=label_to_color)

        button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)


if __name__ == "__main__":
    demo.launch()