Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import GPT2Tokenizer, AutoModelForCausalLM | |
import numpy as np | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
model = AutoModelForCausalLM.from_pretrained("gpt2") | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
# if prob > x, then label = y; sorted in descending probability order | |
probs_to_label = [ | |
(0.1, "p >= 10%"), | |
(0.01, "p >= 1%"), | |
(1e-20, "p < 1%"), | |
] | |
label_to_color = { | |
"p >= 10%": "green", | |
"p >= 1%": "yellow", | |
"p < 1%": "red" | |
} | |
def get_tokens_and_scores(prompt): | |
inputs = tokenizer([prompt], return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True) | |
transition_scores = model.compute_transition_scores( | |
outputs.sequences, outputs.scores, normalize_logits=True | |
) | |
transition_proba = np.exp(transition_scores) | |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] | |
generated_tokens = outputs.sequences[:, input_length:] | |
highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids] | |
for token, proba in zip(generated_tokens[0], transition_proba[0]): | |
this_label = None | |
assert 0. <= proba <= 1.0 | |
for min_proba, label in probs_to_label: | |
if proba >= min_proba: | |
this_label = label | |
break | |
highlighted_out.append((tokenizer.decode(token), this_label)) | |
return highlighted_out | |
demo = gr.Interface( | |
get_tokens_and_scores, | |
[ | |
gr.Textbox( | |
label="Prompt", | |
lines=3, | |
value="Today is", | |
), | |
], | |
gr.HighlightedText( | |
label="Highlighted generation", | |
combine_adjacent=True, | |
show_legend=True, | |
).style(color_map=label_to_color), | |
) | |
if __name__ == "__main__": | |
demo.launch() | |