Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import GPT2Tokenizer, AutoModelForCausalLM | |
import numpy as np | |
MODEL_NAME = "gpt2" | |
if __name__ == "__main__": | |
# Define your model and your tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
model.config.pad_token_id = model.config.eos_token_id | |
# Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order! | |
probs_to_label = [ | |
(0.1, "p >= 10%"), | |
(0.01, "p >= 1%"), | |
(1e-20, "p < 1%"), | |
] | |
label_to_color = { | |
"p >= 10%": "green", | |
"p >= 1%": "yellow", | |
"p < 1%": "red" | |
} | |
def get_tokens_and_labels(prompt): | |
""" | |
Given the prompt (text), return a list of tuples (decoded_token, label) | |
""" | |
inputs = tokenizer([prompt], return_tensors="pt") | |
outputs = model.generate( | |
**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True | |
) | |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1) | |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) | |
transition_proba = np.exp(transition_scores) | |
# We only have scores for the generated tokens, so pop out the prompt tokens | |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] | |
generated_tokens = outputs.sequences[:, input_length:] | |
# Initialize the highlighted output with the prompt, which will have no color label | |
highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids] | |
# Get the (decoded_token, label) pairs for the generated tokens | |
for token, proba in zip(generated_tokens[0], transition_proba[0]): | |
this_label = None | |
assert 0. <= proba <= 1.0 | |
for min_proba, label in probs_to_label: | |
if proba >= min_proba: | |
this_label = label | |
break | |
highlighted_out.append((tokenizer.decode(token), this_label)) | |
return highlighted_out | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
""" | |
# Color Coded Text Generation | |
This is a demo of how you can obtain the probabilities of each token being generated, and use them to | |
color code the generated text π’π‘π΄. Feel free to clone this demo and modify it to your needs π€ | |
Internally, it relies on [`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores), | |
which was added in `transformers` v4.26.0. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", lines=3, value="Today is") | |
button = gr.Button(f"Generate with {MODEL_NAME}") | |
with gr.Column(): | |
highlighted_text = gr.HighlightedText( | |
label="Highlighted generation", | |
combine_adjacent=True, | |
show_legend=True, | |
).style(color_map=label_to_color) | |
button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text) | |
if __name__ == "__main__": | |
demo.launch() | |