baakaani commited on
Commit
426d4b0
·
1 Parent(s): 96b7f88

changes to cuda structure

Browse files
Files changed (2) hide show
  1. generation_utilities.py +4 -4
  2. ui/app.py +1 -1
generation_utilities.py CHANGED
@@ -15,7 +15,7 @@ audio_diffusion_v1 = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_l
15
  ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)
16
 
17
  ### Add numpy docstring to generate_from_music
18
- def generate_from_music(song_array, diffuser, start_step, total_steps=100, device="cuda"):
19
  """
20
  Generates audio from a given song array using a given diffuser.
21
  Parameters
@@ -40,7 +40,7 @@ def generate_from_music(song_array, diffuser, start_step, total_steps=100, devic
40
  output = diffuser(raw_audio=song_array, generator = generator, start_step=start_step, steps=total_steps)
41
  return output.images[0], output.audios[0, 0]
42
 
43
- def generate_from_music_long(song_array, diffuser, start_step, total_steps=100, device="cuda"):
44
  """
45
  Generates a 10 second audio from a given song array using a given diffuser.
46
  Parameters
@@ -108,7 +108,7 @@ def iterative_slerp(song_arrays, ddim, steps=10):
108
 
109
  return slerp
110
 
111
- def merge_songs(song_arrays, ddim, slerp_steps=10, diffusion_steps=100, device="cuda"):
112
  """Merge songs.
113
 
114
  Parameters
@@ -132,7 +132,7 @@ def merge_songs(song_arrays, ddim, slerp_steps=10, diffusion_steps=100, device="
132
  return merged.images[0], merged.audios[0, 0]
133
 
134
  ## Write generate songs function with numpy docstring
135
- def generate_songs(conditioning_songs, similarity=0.9, quality=500, merging_quality=100, device='cuda'):
136
  """Generate songs.
137
 
138
  Parameters
 
15
  ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)
16
 
17
  ### Add numpy docstring to generate_from_music
18
+ def generate_from_music(song_array, diffuser, start_step, total_steps=100, device=device):
19
  """
20
  Generates audio from a given song array using a given diffuser.
21
  Parameters
 
40
  output = diffuser(raw_audio=song_array, generator = generator, start_step=start_step, steps=total_steps)
41
  return output.images[0], output.audios[0, 0]
42
 
43
+ def generate_from_music_long(song_array, diffuser, start_step, total_steps=100, device=device):
44
  """
45
  Generates a 10 second audio from a given song array using a given diffuser.
46
  Parameters
 
108
 
109
  return slerp
110
 
111
+ def merge_songs(song_arrays, ddim, slerp_steps=10, diffusion_steps=100, device=device):
112
  """Merge songs.
113
 
114
  Parameters
 
132
  return merged.images[0], merged.audios[0, 0]
133
 
134
  ## Write generate songs function with numpy docstring
135
+ def generate_songs(conditioning_songs, similarity=0.9, quality=500, merging_quality=100, device=device):
136
  """Generate songs.
137
 
138
  Parameters
ui/app.py CHANGED
@@ -38,7 +38,7 @@ if submit:
38
  song_list = [librosa.load(os.path.join(os.getcwd(),f"input_songs/{song}.mp3"), sr=22050)[0] for song in song_options]
39
  print(song_options,print(song_list))
40
 
41
- spectrogram, generated_song, model_name = generation_utilities.generate_songs(song_list, similarity=similarity, quality=500, merging_quality=100, device='cuda')
42
  st.session_state['song_name'] = song_options[0]
43
  st.session_state['song_list'] = [os.path.join(os.getcwd(),f"input_songs/{song}.mp3") for song in song_options]
44
  st.session_state['song_name'] = '_'.join(song_options)
 
38
  song_list = [librosa.load(os.path.join(os.getcwd(),f"input_songs/{song}.mp3"), sr=22050)[0] for song in song_options]
39
  print(song_options,print(song_list))
40
 
41
+ spectrogram, generated_song, model_name = generation_utilities.generate_songs(song_list, similarity=similarity, quality=500, merging_quality=100)
42
  st.session_state['song_name'] = song_options[0]
43
  st.session_state['song_list'] = [os.path.join(os.getcwd(),f"input_songs/{song}.mp3") for song in song_options]
44
  st.session_state['song_name'] = '_'.join(song_options)