import gradio as gr | |
import numpy as np | |
import librosa | |
import os | |
import soundfile as sf | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
# Default song and similarity values | |
song_default = np.random.choice(["22", "Anti-Hero", "Back-to-december","Blank-Space","Cardigan","Delicate","Lover","Love-Story","Willow","You-Belong-With-Me"]) | |
similarity_default = round(np.random.uniform(0.8, 0.99), 2) | |
# def generate_song(user_id, song_options, similarity): | |
# # Load songs | |
# song_list = [librosa.load(os.path.join(os.getcwd(), f"input_songs/{song}.mp3"), sr=22050)[0] for song in song_options] | |
# # Generate spectrogram and song | |
# spectrogram, generated_song, model_name = generation_utilities.generate_songs(song_list, similarity=similarity, quality=500, merging_quality=100) | |
# # Save generated song and spectrogram | |
# sf.write("ui/temp.wav", generated_song, 22050) | |
# np.save("ui/temp.npy", spectrogram) | |
# # Return user info, generated song path, and link to rating page | |
# return { | |
# "user_id": user_id, | |
# "song_list": song_options, | |
# "similarity": similarity, | |
# "model_name": model_name, | |
# "generated_song": "ui/temp.wav", | |
# "message": "Song generated! [Click here to go to the rating page](ui/gradio_rating.py)" | |
# } | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
user_id = gr.Textbox(label="Enter your user ID") | |
song_options = gr.CheckboxGroup(["22", "Anti-Hero", "Back-to-december","Blank-Space","Cardigan","Delicate","Lover","Love-Story","Willow","You-Belong-With-Me"], label="Select songs from library", value=[song_default]) | |
similarity = gr.Slider(minimum=0.0, maximum=1.0, value=similarity_default, label="Similarity") | |
output = gr.JSON(label="Session Info") | |
generate_button = gr.Button("Generate Song") | |
# generate_button.click(fn=generate_song, inputs=[user_id, song_options, similarity], outputs=output) | |
demo.launch() | |