Upload 8 files
Browse files- .gitattributes +1 -0
- aug_medium.pt +3 -0
- drowsiness-detected.mp3 +0 -0
- drowsiness_detection.py +248 -0
- haarcascade_frontalface_default.xml +0 -0
- shape_predictor_68_face_landmarks.dat +3 -0
- streamlit_app.py +318 -0
- video_processor.py +142 -0
- yawning-detected.mp3 +0 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
src/shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
src/shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
37 |
+
shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
aug_medium.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a2590ddc636558a6cf887857adc3cfda5b2c8501f378124a1a4cfb239004c4e
|
3 |
+
size 40507685
|
drowsiness-detected.mp3
ADDED
Binary file (64.3 kB). View file
|
|
drowsiness_detection.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PREP DEPENDENCIES
|
2 |
+
from scipy.spatial import distance as dist
|
3 |
+
from imutils import face_utils
|
4 |
+
from threading import Thread
|
5 |
+
import numpy as np
|
6 |
+
import cv2 as cv
|
7 |
+
import imutils
|
8 |
+
import dlib
|
9 |
+
import pygame # Used for playing alarm sounds cross-platform
|
10 |
+
import argparse
|
11 |
+
import os
|
12 |
+
|
13 |
+
# --- INITIALIZE MODELS AND CONSTANTS ---
|
14 |
+
|
15 |
+
# Haar cascade classifier for face detection
|
16 |
+
haar_cascade_face_detector = "haarcascade_frontalface_default.xml"
|
17 |
+
face_detector = cv.CascadeClassifier(haar_cascade_face_detector)
|
18 |
+
|
19 |
+
# Dlib facial landmark detector
|
20 |
+
dlib_facial_landmark_predictor = "shape_predictor_68_face_landmarks.dat"
|
21 |
+
landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor)
|
22 |
+
|
23 |
+
# Important Variables
|
24 |
+
font = cv.FONT_HERSHEY_SIMPLEX
|
25 |
+
# --- INITIALIZE MODELS AND CONSTANTS ---
|
26 |
+
# Eye Drowsiness Detection
|
27 |
+
EYE_ASPECT_RATIO_THRESHOLD = 0.25
|
28 |
+
EYE_CLOSED_THRESHOLD = 20
|
29 |
+
EYE_THRESH_COUNTER = 0
|
30 |
+
DROWSY_COUNTER = 0
|
31 |
+
drowsy_alert = False
|
32 |
+
|
33 |
+
# Mouth Yawn Detection
|
34 |
+
MOUTH_ASPECT_RATIO_THRESHOLD = 0.5
|
35 |
+
MOUTH_OPEN_THRESHOLD = 15
|
36 |
+
YAWN_THRESH_COUNTER = 0
|
37 |
+
YAWN_COUNTER = 0
|
38 |
+
yawn_alert = False
|
39 |
+
|
40 |
+
# NEW: Head Not Visible Detection
|
41 |
+
FACE_LOST_THRESHOLD = 25 # Conseq. frames face must be lost to trigger alert
|
42 |
+
FACE_LOST_COUNTER = 0
|
43 |
+
HEAD_DOWN_COUNTER = 0 # Renaming for clarity
|
44 |
+
head_down_alert = False
|
45 |
+
|
46 |
+
# --- AUDIO SETUP (using Pygame) ---
|
47 |
+
pygame.mixer.init()
|
48 |
+
drowsiness_sound = pygame.mixer.Sound("drowsiness-detected.mp3")
|
49 |
+
yawn_sound = pygame.mixer.Sound("yawning-detected.mp3")
|
50 |
+
# head_down_sound = pygame.mixer.Sound("dependencies/audio/head-down-detected.mp3")
|
51 |
+
|
52 |
+
# --- CORE FUNCTIONS ---
|
53 |
+
def play_alarm(sound_to_play):
|
54 |
+
if not pygame.mixer.get_busy():
|
55 |
+
sound_to_play.play()
|
56 |
+
|
57 |
+
def generate_alert(final_eye_ratio, final_mouth_ratio):
|
58 |
+
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER
|
59 |
+
global drowsy_alert, yawn_alert
|
60 |
+
global DROWSY_COUNTER, YAWN_COUNTER
|
61 |
+
|
62 |
+
# Drowsiness check
|
63 |
+
if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD:
|
64 |
+
EYE_THRESH_COUNTER += 1
|
65 |
+
if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD:
|
66 |
+
if not drowsy_alert:
|
67 |
+
DROWSY_COUNTER += 1
|
68 |
+
drowsy_alert = True
|
69 |
+
Thread(target=play_alarm, args=(drowsiness_sound,)).start()
|
70 |
+
else:
|
71 |
+
EYE_THRESH_COUNTER = 0
|
72 |
+
drowsy_alert = False
|
73 |
+
|
74 |
+
# Yawn check
|
75 |
+
if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD:
|
76 |
+
YAWN_THRESH_COUNTER += 1
|
77 |
+
if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD:
|
78 |
+
if not yawn_alert:
|
79 |
+
YAWN_COUNTER += 1
|
80 |
+
yawn_alert = True
|
81 |
+
Thread(target=play_alarm, args=(yawn_sound,)).start()
|
82 |
+
else:
|
83 |
+
YAWN_THRESH_COUNTER = 0
|
84 |
+
yawn_alert = False
|
85 |
+
|
86 |
+
def detect_facial_landmarks(x, y, w, h, gray_frame):
|
87 |
+
face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h))
|
88 |
+
face_landmarks = landmark_predictor(gray_frame, face)
|
89 |
+
face_landmarks = face_utils.shape_to_np(face_landmarks)
|
90 |
+
return face_landmarks
|
91 |
+
|
92 |
+
def eye_aspect_ratio(eye):
|
93 |
+
A = dist.euclidean(eye[1], eye[5])
|
94 |
+
B = dist.euclidean(eye[2], eye[4])
|
95 |
+
C = dist.euclidean(eye[0], eye[3])
|
96 |
+
ear = (A + B) / (2.0 * C)
|
97 |
+
return ear
|
98 |
+
|
99 |
+
def final_eye_aspect_ratio(shape):
|
100 |
+
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
|
101 |
+
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
|
102 |
+
left_eye = shape[lStart:lEnd]
|
103 |
+
right_eye = shape[rStart:rEnd]
|
104 |
+
left_ear = eye_aspect_ratio(left_eye)
|
105 |
+
right_ear = eye_aspect_ratio(right_eye)
|
106 |
+
final_ear = (left_ear + right_ear) / 2.0
|
107 |
+
return final_ear, left_eye, right_eye
|
108 |
+
|
109 |
+
def mouth_aspect_ratio(mouth):
|
110 |
+
A = dist.euclidean(mouth[2], mouth[10])
|
111 |
+
B = dist.euclidean(mouth[4], mouth[8])
|
112 |
+
C = dist.euclidean(mouth[0], mouth[6])
|
113 |
+
mar = (A + B) / (2.0 * C)
|
114 |
+
return mar
|
115 |
+
|
116 |
+
def final_mouth_aspect_ratio(shape):
|
117 |
+
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
|
118 |
+
mouth = shape[mStart:mEnd]
|
119 |
+
return mouth_aspect_ratio(mouth), mouth
|
120 |
+
|
121 |
+
def head_pose_ratio(shape):
|
122 |
+
nose_tip = shape[30]
|
123 |
+
chin_tip = shape[8]
|
124 |
+
left_face_corner = shape[0]
|
125 |
+
right_face_corner = shape[16]
|
126 |
+
nose_to_chin_dist = dist.euclidean(nose_tip, chin_tip)
|
127 |
+
face_width = dist.euclidean(left_face_corner, right_face_corner)
|
128 |
+
if face_width == 0:
|
129 |
+
return 0.0
|
130 |
+
hpr = nose_to_chin_dist / face_width
|
131 |
+
return hpr
|
132 |
+
|
133 |
+
def reset_counters():
|
134 |
+
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER
|
135 |
+
global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
|
136 |
+
global drowsy_alert, yawn_alert, head_down_alert
|
137 |
+
EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0
|
138 |
+
DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0
|
139 |
+
drowsy_alert, yawn_alert, head_down_alert = False, False, False
|
140 |
+
|
141 |
+
def process_frame(frame):
|
142 |
+
global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER
|
143 |
+
frame = imutils.resize(frame, width=640)
|
144 |
+
gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
145 |
+
faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE)
|
146 |
+
if len(faces) > 0:
|
147 |
+
FACE_LOST_COUNTER = 0
|
148 |
+
head_down_alert = False
|
149 |
+
(x, y, w, h) = faces[0]
|
150 |
+
face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame)
|
151 |
+
final_ear, left_eye, right_eye = final_eye_aspect_ratio(face_landmarks)
|
152 |
+
final_mar, mouth = final_mouth_aspect_ratio(face_landmarks)
|
153 |
+
# left_eye_hull, right_eye_hull, mouth_hull = cv.convexHull(left_eye), cv.convexHull(right_eye), cv.convexHull(mouth)
|
154 |
+
# cv.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
|
155 |
+
# cv.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)
|
156 |
+
# cv.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)
|
157 |
+
generate_alert(final_ear, final_mar)
|
158 |
+
cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2)
|
159 |
+
cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2)
|
160 |
+
else:
|
161 |
+
FACE_LOST_COUNTER += 1
|
162 |
+
if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert:
|
163 |
+
HEAD_DOWN_COUNTER += 1
|
164 |
+
head_down_alert = True
|
165 |
+
cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2)
|
166 |
+
cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2)
|
167 |
+
cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2)
|
168 |
+
if drowsy_alert: cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2)
|
169 |
+
if yawn_alert: cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2)
|
170 |
+
if head_down_alert: cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2)
|
171 |
+
return frame
|
172 |
+
|
173 |
+
def process_video(input_path, output_path=None):
|
174 |
+
reset_counters()
|
175 |
+
video_stream = cv.VideoCapture(input_path)
|
176 |
+
if not video_stream.isOpened():
|
177 |
+
print(f"Error: Could not open video file {input_path}")
|
178 |
+
return False
|
179 |
+
|
180 |
+
fps = int(video_stream.get(cv.CAP_PROP_FPS))
|
181 |
+
width = int(video_stream.get(cv.CAP_PROP_FRAME_WIDTH))
|
182 |
+
height = int(video_stream.get(cv.CAP_PROP_FRAME_HEIGHT))
|
183 |
+
|
184 |
+
print(f"Processing video: {input_path}")
|
185 |
+
print(f"Original Res: {width}x{height}, FPS: {fps}")
|
186 |
+
|
187 |
+
video_writer = None
|
188 |
+
if output_path:
|
189 |
+
fourcc = cv.VideoWriter_fourcc(*'mp4v')
|
190 |
+
# --- FIX: Calculate correct output dimensions to prevent corruption ---
|
191 |
+
# The process_frame function resizes frames to a fixed width of 640.
|
192 |
+
output_width = 640
|
193 |
+
# Maintain aspect ratio
|
194 |
+
output_height = int(height * (output_width / float(width)))
|
195 |
+
output_dims = (output_width, output_height)
|
196 |
+
video_writer = cv.VideoWriter(output_path, fourcc, fps, output_dims)
|
197 |
+
print(f"Outputting video with Res: {output_dims[0]}x{output_dims[1]}")
|
198 |
+
|
199 |
+
while True:
|
200 |
+
ret, frame = video_stream.read()
|
201 |
+
if not ret: break
|
202 |
+
|
203 |
+
processed_frame = process_frame(frame)
|
204 |
+
if video_writer: video_writer.write(processed_frame)
|
205 |
+
|
206 |
+
video_stream.release()
|
207 |
+
if video_writer: video_writer.release()
|
208 |
+
|
209 |
+
print("Video processing complete!")
|
210 |
+
print(f"Final Stats - Drowsy: {DROWSY_COUNTER}, Yawn: {YAWN_COUNTER}, Head Down: {HEAD_DOWN_COUNTER}")
|
211 |
+
return True
|
212 |
+
|
213 |
+
def run_webcam():
|
214 |
+
reset_counters()
|
215 |
+
video_stream = cv.VideoCapture(0)
|
216 |
+
if not video_stream.isOpened():
|
217 |
+
print("Error: Could not open webcam")
|
218 |
+
return False
|
219 |
+
while True:
|
220 |
+
ret, frame = video_stream.read()
|
221 |
+
if not ret:
|
222 |
+
print("Failed to grab frame")
|
223 |
+
break
|
224 |
+
processed_frame = process_frame(frame)
|
225 |
+
cv.imshow("Live Drowsiness and Yawn Detection", processed_frame)
|
226 |
+
if cv.waitKey(1) & 0xFF == ord('q'): break
|
227 |
+
video_stream.release()
|
228 |
+
cv.destroyAllWindows()
|
229 |
+
return True
|
230 |
+
|
231 |
+
# --- MAIN EXECUTION LOOP ---
|
232 |
+
if __name__ == "__main__":
|
233 |
+
parser = argparse.ArgumentParser(description='Drowsiness Detection System')
|
234 |
+
parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation')
|
235 |
+
parser.add_argument('--input', type=str, help='Input video file path for video mode')
|
236 |
+
parser.add_argument('--output', type=str, help='Output video file path for video mode')
|
237 |
+
args = parser.parse_args()
|
238 |
+
|
239 |
+
if args.mode == 'webcam':
|
240 |
+
print("Starting webcam detection...")
|
241 |
+
run_webcam()
|
242 |
+
elif args.mode == 'video':
|
243 |
+
if not args.input:
|
244 |
+
print("Error: --input argument is required for video mode.")
|
245 |
+
elif not os.path.exists(args.input):
|
246 |
+
print(f"Error: Input file not found at {args.input}")
|
247 |
+
else:
|
248 |
+
process_video(args.input, args.output)
|
haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
shape_predictor_68_face_landmarks.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
|
3 |
+
size 99693937
|
streamlit_app.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import sys
|
3 |
+
|
4 |
+
if sys.platform.startswith('linux') and sys.version_info >= (3, 8):
|
5 |
+
try:
|
6 |
+
asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
|
7 |
+
except Exception:
|
8 |
+
pass
|
9 |
+
import streamlit as st
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
import subprocess
|
13 |
+
import time
|
14 |
+
import tempfile
|
15 |
+
import os
|
16 |
+
from ultralytics import YOLO
|
17 |
+
import cv2 as cv
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
model_path="best.pt"
|
21 |
+
|
22 |
+
# --- Page Configuration ---
|
23 |
+
st.set_page_config(
|
24 |
+
page_title="Driver Distraction System",
|
25 |
+
page_icon="🚗",
|
26 |
+
layout="wide",
|
27 |
+
initial_sidebar_state="expanded",
|
28 |
+
)
|
29 |
+
|
30 |
+
# --- Sidebar ---
|
31 |
+
st.sidebar.title("🚗 Driver Distraction System")
|
32 |
+
st.sidebar.write("Choose an option below:")
|
33 |
+
|
34 |
+
# Sidebar navigation
|
35 |
+
page = st.sidebar.radio("Select Feature", [
|
36 |
+
"Distraction System",
|
37 |
+
"Real-time Drowsiness Detection",
|
38 |
+
"Video Drowsiness Detection"
|
39 |
+
])
|
40 |
+
|
41 |
+
# --- Class Labels (for YOLO model) ---
|
42 |
+
class_names = ['drinking', 'hair and makeup', 'operating the radio', 'reaching behind',
|
43 |
+
'safe driving', 'talking on the phone', 'talking to passenger', 'texting']
|
44 |
+
|
45 |
+
# Sidebar Class Name Display
|
46 |
+
st.sidebar.subheader("Class Names")
|
47 |
+
for idx, class_name in enumerate(class_names):
|
48 |
+
st.sidebar.write(f"{idx}: {class_name}")
|
49 |
+
|
50 |
+
# --- Feature: YOLO Distraction Detection ---
|
51 |
+
if page == "Distraction System":
|
52 |
+
st.title("Driver Distraction System")
|
53 |
+
st.write("Upload an image or video to detect distractions using YOLO model.")
|
54 |
+
|
55 |
+
# File type selection
|
56 |
+
file_type = st.radio("Select file type:", ["Image", "Video"])
|
57 |
+
|
58 |
+
if file_type == "Image":
|
59 |
+
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
60 |
+
if uploaded_file is not None:
|
61 |
+
image = Image.open(uploaded_file).convert('RGB')
|
62 |
+
image_np = np.array(image)
|
63 |
+
col1, col2 = st.columns([1, 1])
|
64 |
+
with col1:
|
65 |
+
st.subheader("Uploaded Image")
|
66 |
+
st.image(image, caption="Original Image", use_container_width=True)
|
67 |
+
with col2:
|
68 |
+
st.subheader("Detection Results")
|
69 |
+
model = YOLO(model_path)
|
70 |
+
start_time = time.time()
|
71 |
+
results = model(image_np)
|
72 |
+
end_time = time.time()
|
73 |
+
prediction_time = end_time - start_time
|
74 |
+
result = results[0]
|
75 |
+
if len(result.boxes) > 0:
|
76 |
+
boxes = result.boxes
|
77 |
+
confidences = boxes.conf.cpu().numpy()
|
78 |
+
classes = boxes.cls.cpu().numpy()
|
79 |
+
class_names_dict = result.names
|
80 |
+
max_conf_idx = confidences.argmax()
|
81 |
+
predicted_class = class_names_dict[int(classes[max_conf_idx])]
|
82 |
+
confidence_score = confidences[max_conf_idx]
|
83 |
+
st.markdown(f"### Predicted Class: **{predicted_class}**")
|
84 |
+
st.markdown(f"### Confidence Score: **{confidence_score:.4f}** ({confidence_score*100:.1f}%)")
|
85 |
+
st.markdown(f"Inference Time: {prediction_time:.2f} seconds")
|
86 |
+
else:
|
87 |
+
st.warning("No distractions detected.")
|
88 |
+
|
89 |
+
else: # Video processing
|
90 |
+
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
|
91 |
+
|
92 |
+
if uploaded_video is not None:
|
93 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
94 |
+
tfile.write(uploaded_video.read())
|
95 |
+
temp_input_path = tfile.name
|
96 |
+
temp_output_path = tempfile.mktemp(suffix="_distraction_detected.mp4")
|
97 |
+
|
98 |
+
st.subheader("Video Information")
|
99 |
+
cap = cv.VideoCapture(temp_input_path)
|
100 |
+
fps = cap.get(cv.CAP_PROP_FPS)
|
101 |
+
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
102 |
+
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
103 |
+
total_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
|
104 |
+
duration = total_frames / fps if fps > 0 else 0
|
105 |
+
cap.release()
|
106 |
+
|
107 |
+
col1, col2 = st.columns(2)
|
108 |
+
with col1:
|
109 |
+
st.metric("Duration", f"{duration:.2f} seconds")
|
110 |
+
st.metric("Original FPS", f"{fps:.2f}")
|
111 |
+
with col2:
|
112 |
+
st.metric("Resolution", f"{width}x{height}")
|
113 |
+
st.metric("Total Frames", total_frames)
|
114 |
+
|
115 |
+
st.subheader("Original Video Preview")
|
116 |
+
st.video(uploaded_video)
|
117 |
+
|
118 |
+
if st.button("Process Video for Distraction Detection"):
|
119 |
+
TARGET_PROCESSING_FPS = 10
|
120 |
+
# --- NEW: Hyperparameter for the temporal smoothing logic ---
|
121 |
+
PERSISTENCE_CONFIDENCE_THRESHOLD = 0.40 # Stick with old class if found with >= 40% confidence
|
122 |
+
|
123 |
+
st.info(f"🚀 For faster results, video will be processed at ~{TARGET_PROCESSING_FPS} FPS.")
|
124 |
+
st.info(f"🧠 Applying temporal smoothing to reduce status flickering (Persistence Threshold: {PERSISTENCE_CONFIDENCE_THRESHOLD*100:.0f}%).")
|
125 |
+
|
126 |
+
progress_bar = st.progress(0, text="Starting video processing...")
|
127 |
+
|
128 |
+
with st.spinner(f"Processing video... This may take a while."):
|
129 |
+
model = YOLO(model_path)
|
130 |
+
cap = cv.VideoCapture(temp_input_path)
|
131 |
+
|
132 |
+
fourcc = cv.VideoWriter_fourcc(*'mp4v')
|
133 |
+
out = cv.VideoWriter(temp_output_path, fourcc, fps, (width, height))
|
134 |
+
|
135 |
+
frame_skip_interval = max(1, round(fps / TARGET_PROCESSING_FPS))
|
136 |
+
|
137 |
+
frame_count = 0
|
138 |
+
last_best_box_coords = None
|
139 |
+
last_best_box_label = ""
|
140 |
+
last_status_text = "Status: Initializing..."
|
141 |
+
last_status_color = (128, 128, 128)
|
142 |
+
# --- NEW: State variable to store the last confirmed class ---
|
143 |
+
last_confirmed_class_name = 'safe driving'
|
144 |
+
|
145 |
+
while cap.isOpened():
|
146 |
+
ret, frame = cap.read()
|
147 |
+
if not ret:
|
148 |
+
break
|
149 |
+
|
150 |
+
frame_count += 1
|
151 |
+
progress = int((frame_count / total_frames) * 100) if total_frames > 0 else 0
|
152 |
+
progress_bar.progress(progress, text=f"Analyzing frame {frame_count}/{total_frames}")
|
153 |
+
|
154 |
+
annotated_frame = frame.copy()
|
155 |
+
|
156 |
+
if frame_count % frame_skip_interval == 0:
|
157 |
+
results = model(annotated_frame)
|
158 |
+
result = results[0]
|
159 |
+
|
160 |
+
last_best_box_coords = None # Reset box for this processing cycle
|
161 |
+
|
162 |
+
if len(result.boxes) > 0:
|
163 |
+
boxes = result.boxes
|
164 |
+
class_names_dict = result.names
|
165 |
+
confidences = boxes.conf.cpu().numpy()
|
166 |
+
classes = boxes.cls.cpu().numpy()
|
167 |
+
|
168 |
+
# --- NEW STABILITY LOGIC ---
|
169 |
+
final_box_to_use = None
|
170 |
+
|
171 |
+
# 1. Check if the last known class exists with reasonable confidence
|
172 |
+
for i in range(len(boxes)):
|
173 |
+
current_class_name = class_names_dict[int(classes[i])]
|
174 |
+
if current_class_name == last_confirmed_class_name and confidences[i] >= PERSISTENCE_CONFIDENCE_THRESHOLD:
|
175 |
+
final_box_to_use = boxes[i]
|
176 |
+
break
|
177 |
+
|
178 |
+
# 2. If not, fall back to the highest confidence detection in the current frame
|
179 |
+
if final_box_to_use is None:
|
180 |
+
max_conf_idx = confidences.argmax()
|
181 |
+
final_box_to_use = boxes[max_conf_idx]
|
182 |
+
# --- END OF NEW LOGIC ---
|
183 |
+
|
184 |
+
# Now, process the determined "final_box_to_use"
|
185 |
+
x1, y1, x2, y2 = final_box_to_use.xyxy[0].cpu().numpy()
|
186 |
+
confidence = final_box_to_use.conf[0].cpu().numpy()
|
187 |
+
class_id = int(final_box_to_use.cls[0].cpu().numpy())
|
188 |
+
class_name = class_names_dict[class_id]
|
189 |
+
|
190 |
+
# Update the state for the next frames
|
191 |
+
last_confirmed_class_name = class_name
|
192 |
+
last_best_box_coords = (int(x1), int(y1), int(x2), int(y2))
|
193 |
+
last_best_box_label = f"{class_name}: {confidence:.2f}"
|
194 |
+
|
195 |
+
if class_name != 'safe driving':
|
196 |
+
last_status_text = f"Status: {class_name.replace('_', ' ').title()}"
|
197 |
+
last_status_color = (0, 0, 255)
|
198 |
+
else:
|
199 |
+
last_status_text = "Status: Safe Driving"
|
200 |
+
last_status_color = (0, 128, 0)
|
201 |
+
else:
|
202 |
+
# No detections, reset to safe driving
|
203 |
+
last_confirmed_class_name = 'safe driving'
|
204 |
+
last_status_text = "Status: Safe Driving"
|
205 |
+
last_status_color = (0, 128, 0)
|
206 |
+
|
207 |
+
# Draw annotations on EVERY frame using the last known data
|
208 |
+
if last_best_box_coords:
|
209 |
+
cv.rectangle(annotated_frame, (last_best_box_coords[0], last_best_box_coords[1]),
|
210 |
+
(last_best_box_coords[2], last_best_box_coords[3]), (0, 255, 0), 2)
|
211 |
+
cv.putText(annotated_frame, last_best_box_label,
|
212 |
+
(last_best_box_coords[0], last_best_box_coords[1] - 10),
|
213 |
+
cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
214 |
+
|
215 |
+
# Draw status text
|
216 |
+
font_scale, font_thickness = 1.0, 2
|
217 |
+
(text_w, text_h), _ = cv.getTextSize(last_status_text, cv.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
218 |
+
padding = 10
|
219 |
+
rect_start = (padding, padding)
|
220 |
+
rect_end = (padding + text_w + padding, padding + text_h + padding)
|
221 |
+
cv.rectangle(annotated_frame, rect_start, rect_end, last_status_color, -1)
|
222 |
+
text_pos = (padding + 5, padding + text_h + 5)
|
223 |
+
cv.putText(annotated_frame, last_status_text, text_pos, cv.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
|
224 |
+
|
225 |
+
out.write(annotated_frame)
|
226 |
+
|
227 |
+
cap.release()
|
228 |
+
out.release()
|
229 |
+
progress_bar.progress(100, text="Video processing completed!")
|
230 |
+
|
231 |
+
st.success("Video processed successfully!")
|
232 |
+
|
233 |
+
if os.path.exists(temp_output_path):
|
234 |
+
with open(temp_output_path, "rb") as file:
|
235 |
+
video_bytes = file.read()
|
236 |
+
|
237 |
+
st.download_button(
|
238 |
+
label="📥 Download Processed Video",
|
239 |
+
data=video_bytes,
|
240 |
+
file_name=f"distraction_detected_{uploaded_video.name}",
|
241 |
+
mime="video/mp4",
|
242 |
+
key="download_distraction_video"
|
243 |
+
)
|
244 |
+
|
245 |
+
st.subheader("Sample Frame from Processed Video")
|
246 |
+
cap_out = cv.VideoCapture(temp_output_path)
|
247 |
+
ret, frame = cap_out.read()
|
248 |
+
if ret:
|
249 |
+
frame_rgb = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
250 |
+
st.image(frame_rgb, caption="Sample frame with distraction detection", use_container_width=True)
|
251 |
+
cap_out.release()
|
252 |
+
|
253 |
+
try:
|
254 |
+
os.unlink(temp_input_path)
|
255 |
+
if os.path.exists(temp_output_path): os.unlink(temp_output_path)
|
256 |
+
except Exception as e:
|
257 |
+
st.warning(f"Failed to clean up temporary files: {e}")
|
258 |
+
|
259 |
+
# --- Feature: Real-time Drowsiness Detection ---
|
260 |
+
elif page == "Real-time Drowsiness Detection":
|
261 |
+
st.title("🧠 Real-time Drowsiness Detection")
|
262 |
+
st.write("This will open your webcam and run the detection script.")
|
263 |
+
if st.button("Start Drowsiness Detection"):
|
264 |
+
with st.spinner("Launching webcam..."):
|
265 |
+
subprocess.Popen(["python3", "drowsiness_detection.py", "--mode", "webcam"])
|
266 |
+
st.success("Drowsiness detection started in a separate window. Press 'q' in that window to quit.")
|
267 |
+
|
268 |
+
# --- Feature: Video Drowsiness Detection ---
|
269 |
+
elif page == "Video Drowsiness Detection":
|
270 |
+
st.title("📹 Video Drowsiness Detection")
|
271 |
+
st.write("Upload a video file to detect drowsiness and download the processed video.")
|
272 |
+
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
|
273 |
+
if uploaded_video is not None:
|
274 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
275 |
+
tfile.write(uploaded_video.read())
|
276 |
+
temp_input_path = tfile.name
|
277 |
+
temp_output_path = tempfile.mktemp(suffix="_processed.mp4")
|
278 |
+
st.subheader("Original Video Preview")
|
279 |
+
st.video(uploaded_video)
|
280 |
+
if st.button("Process Video for Drowsiness Detection"):
|
281 |
+
progress_bar = st.progress(0, text="Preparing to process video...")
|
282 |
+
with st.spinner("Processing video... This may take a while."):
|
283 |
+
process = subprocess.Popen([
|
284 |
+
"python3", "drowsiness_detection.py",
|
285 |
+
"--mode", "video",
|
286 |
+
"--input", temp_input_path,
|
287 |
+
"--output", temp_output_path
|
288 |
+
], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
289 |
+
stdout, stderr = process.communicate()
|
290 |
+
if process.returncode == 0:
|
291 |
+
progress_bar.progress(100, text="Video processing completed!")
|
292 |
+
if os.path.exists(temp_output_path):
|
293 |
+
st.success("Video processed successfully!")
|
294 |
+
if stdout: st.code(stdout)
|
295 |
+
with open(temp_output_path, "rb") as file: video_bytes = file.read()
|
296 |
+
st.download_button(
|
297 |
+
label="📥 Download Processed Video",
|
298 |
+
data=video_bytes,
|
299 |
+
file_name=f"drowsiness_detected_{uploaded_video.name}",
|
300 |
+
mime="video/mp4",
|
301 |
+
key="download_processed_video"
|
302 |
+
)
|
303 |
+
st.subheader("Sample Frame from Processed Video")
|
304 |
+
cap = cv.VideoCapture(temp_output_path)
|
305 |
+
ret, frame = cap.read()
|
306 |
+
if ret: st.image(cv.cvtColor(frame, cv.COLOR_BGR2RGB), caption="Sample frame with drowsiness detection", use_container_width=True)
|
307 |
+
cap.release()
|
308 |
+
else:
|
309 |
+
st.error("Error: Processed video file not found.")
|
310 |
+
if stderr: st.code(stderr)
|
311 |
+
else:
|
312 |
+
st.error("An error occurred during video processing.")
|
313 |
+
if stderr: st.code(stderr)
|
314 |
+
try:
|
315 |
+
if os.path.exists(temp_input_path): os.unlink(temp_input_path)
|
316 |
+
if os.path.exists(temp_output_path): os.unlink(temp_output_path)
|
317 |
+
except Exception as e:
|
318 |
+
st.warning(f"Failed to clean up temporary files: {e}")
|
video_processor.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Video Processing Utility for Drowsiness Detection
|
3 |
+
This script provides a more robust video processing interface
|
4 |
+
"""
|
5 |
+
|
6 |
+
import cv2 as cv
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
from datetime import datetime
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
def get_video_info(video_path):
|
13 |
+
"""Get detailed video information"""
|
14 |
+
cap = cv.VideoCapture(video_path)
|
15 |
+
|
16 |
+
if not cap.isOpened():
|
17 |
+
return None
|
18 |
+
|
19 |
+
info = {
|
20 |
+
'fps': cap.get(cv.CAP_PROP_FPS),
|
21 |
+
'width': int(cap.get(cv.CAP_PROP_FRAME_WIDTH)),
|
22 |
+
'height': int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)),
|
23 |
+
'total_frames': int(cap.get(cv.CAP_PROP_FRAME_COUNT)),
|
24 |
+
'duration': cap.get(cv.CAP_PROP_FRAME_COUNT) / cap.get(cv.CAP_PROP_FPS) if cap.get(cv.CAP_PROP_FPS) > 0 else 0,
|
25 |
+
'codec': int(cap.get(cv.CAP_PROP_FOURCC)),
|
26 |
+
'file_size': os.path.getsize(video_path)
|
27 |
+
}
|
28 |
+
|
29 |
+
cap.release()
|
30 |
+
return info
|
31 |
+
|
32 |
+
def create_processing_report(input_path, output_path, stats):
|
33 |
+
"""Create a JSON report of the processing results"""
|
34 |
+
report = {
|
35 |
+
'timestamp': datetime.now().isoformat(),
|
36 |
+
'input_file': input_path,
|
37 |
+
'output_file': output_path,
|
38 |
+
'video_info': get_video_info(input_path),
|
39 |
+
'detection_stats': stats,
|
40 |
+
'processing_info': {
|
41 |
+
'software': 'Drowsiness Detection System',
|
42 |
+
'version': '1.0'
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
report_path = output_path.replace('.mp4', '_report.json')
|
47 |
+
with open(report_path, 'w') as f:
|
48 |
+
json.dump(report, f, indent=2)
|
49 |
+
|
50 |
+
return report_path
|
51 |
+
|
52 |
+
def process_video_with_progress(input_path, output_path, progress_callback=None):
|
53 |
+
"""
|
54 |
+
Process video with progress callback
|
55 |
+
progress_callback: function that takes (current_frame, total_frames)
|
56 |
+
"""
|
57 |
+
# Import the drowsiness detection functions
|
58 |
+
from drowsiness_detection import process_frame, reset_counters
|
59 |
+
from drowsiness_detection import DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER
|
60 |
+
|
61 |
+
reset_counters()
|
62 |
+
|
63 |
+
# Open video file
|
64 |
+
video_stream = cv.VideoCapture(input_path)
|
65 |
+
|
66 |
+
if not video_stream.isOpened():
|
67 |
+
raise ValueError(f"Could not open video file {input_path}")
|
68 |
+
|
69 |
+
# Get video properties
|
70 |
+
fps = int(video_stream.get(cv.CAP_PROP_FPS))
|
71 |
+
width = int(video_stream.get(cv.CAP_PROP_FRAME_WIDTH))
|
72 |
+
height = int(video_stream.get(cv.CAP_PROP_FRAME_HEIGHT))
|
73 |
+
total_frames = int(video_stream.get(cv.CAP_PROP_FRAME_COUNT))
|
74 |
+
|
75 |
+
# Setup video writer
|
76 |
+
fourcc = cv.VideoWriter_fourcc(*'mp4v')
|
77 |
+
video_writer = cv.VideoWriter(output_path, fourcc, fps, (640, 480))
|
78 |
+
|
79 |
+
frame_count = 0
|
80 |
+
|
81 |
+
try:
|
82 |
+
while True:
|
83 |
+
ret, frame = video_stream.read()
|
84 |
+
if not ret:
|
85 |
+
break
|
86 |
+
|
87 |
+
frame_count += 1
|
88 |
+
|
89 |
+
# Process frame
|
90 |
+
processed_frame = process_frame(frame)
|
91 |
+
|
92 |
+
# Write frame to output video
|
93 |
+
video_writer.write(processed_frame)
|
94 |
+
|
95 |
+
# Call progress callback if provided
|
96 |
+
if progress_callback:
|
97 |
+
progress_callback(frame_count, total_frames)
|
98 |
+
|
99 |
+
# Get final stats
|
100 |
+
stats = {
|
101 |
+
'total_frames': frame_count,
|
102 |
+
'drowsy_events': DROWSY_COUNTER,
|
103 |
+
'yawn_events': YAWN_COUNTER,
|
104 |
+
'head_down_events': HEAD_DOWN_COUNTER
|
105 |
+
}
|
106 |
+
|
107 |
+
return stats
|
108 |
+
|
109 |
+
finally:
|
110 |
+
video_stream.release()
|
111 |
+
video_writer.release()
|
112 |
+
|
113 |
+
def main():
|
114 |
+
parser = argparse.ArgumentParser(description='Video Processing Utility for Drowsiness Detection')
|
115 |
+
parser.add_argument('--input', '-i', required=True, help='Input video file path')
|
116 |
+
parser.add_argument('--output', '-o', help='Output video file path (optional)')
|
117 |
+
parser.add_argument('--report', '-r', action='store_true', help='Generate processing report')
|
118 |
+
parser.add_argument('--info', action='store_true', help='Show video information only')
|
119 |
+
|
120 |
+
args = parser.parse_args()
|
121 |
+
|
122 |
+
if not os.path.exists(args.input):
|
123 |
+
print(f"Error: Input file {args.input} does not exist")
|
124 |
+
return
|
125 |
+
|
126 |
+
# Show video info
|
127 |
+
if args.info:
|
128 |
+
info = get_video_info(args.input)
|
129 |
+
if info:
|
130 |
+
print(f"Video Information for: {args.input}")
|
131 |
+
print(f"Resolution: {info['width']}x{info['height']}")
|
132 |
+
print(f"FPS: {info['fps']:.2f}")
|
133 |
+
print(f"Duration: {info['duration']:.2f} seconds")
|
134 |
+
print(f"Total Frames: {info['total_frames']}")
|
135 |
+
print(f"File Size: {info['file_size'] / (1024*1024):.2f} MB")
|
136 |
+
else:
|
137 |
+
print("Error: Could not read video file")
|
138 |
+
return
|
139 |
+
|
140 |
+
# Generate output path if not provided
|
141 |
+
if not args.output:
|
142 |
+
base_name
|
yawning-detected.mp3
ADDED
Binary file (64.3 kB). View file
|
|