Update streamlit_app.py
Browse files- streamlit_app.py +262 -98
streamlit_app.py
CHANGED
@@ -21,7 +21,11 @@ import cv2 as cv
|
|
21 |
# --- NEW: Import your refactored video processing logic ---
|
22 |
from video_processor import process_video_with_progress
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# --- Page Configuration ---
|
27 |
st.set_page_config(
|
@@ -35,12 +39,22 @@ st.set_page_config(
|
|
35 |
st.sidebar.title("π Driver Distraction System")
|
36 |
st.sidebar.write("Choose an option below:")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# --- Sidebar navigation ---
|
39 |
-
page = st.sidebar.radio("Select Feature",
|
40 |
-
"Distraction System",
|
41 |
-
"Video Drowsiness Detection",
|
42 |
-
"Real-time Drowsiness Detection"
|
43 |
-
])
|
44 |
|
45 |
# --- Class Labels (for YOLO model) ---
|
46 |
st.sidebar.subheader("Class Names")
|
@@ -60,46 +74,180 @@ if page == "Distraction System":
|
|
60 |
if file_type == "Image":
|
61 |
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
62 |
if uploaded_file is not None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
elif page == "Real-time Drowsiness Detection":
|
93 |
st.title("π§ Real-time Drowsiness Detection")
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
# --- Feature: Video Drowsiness Detection ---
|
105 |
elif page == "Video Drowsiness Detection":
|
@@ -108,60 +256,76 @@ elif page == "Video Drowsiness Detection":
|
|
108 |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
|
109 |
|
110 |
if uploaded_video is not None:
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
st.subheader("Original Video Preview")
|
118 |
-
st.video(uploaded_video)
|
119 |
-
|
120 |
-
if st.button("Process Video for Drowsiness Detection"):
|
121 |
-
progress_bar = st.progress(0, text="Preparing to process video...")
|
122 |
-
|
123 |
-
# --- NEW: Define a callback function for the progress bar ---
|
124 |
-
def streamlit_progress_callback(current, total):
|
125 |
-
if total > 0:
|
126 |
-
percent_complete = int((current / total) * 100)
|
127 |
-
progress_bar.progress(percent_complete, text=f"Analyzing frame {current}/{total}...")
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
input_path=temp_input_path,
|
135 |
-
output_path=temp_output_path,
|
136 |
-
progress_callback=streamlit_progress_callback
|
137 |
-
)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
col1.metric("Drowsy Events", stats.get('drowsy_events', 0))
|
146 |
-
col2.metric("Yawn Events", stats.get('yawn_events', 0))
|
147 |
-
col3.metric("Head Down Events", stats.get('head_down_events', 0))
|
148 |
-
|
149 |
-
# Offer the processed video for download
|
150 |
-
if os.path.exists(temp_output_path):
|
151 |
-
with open(temp_output_path, "rb") as file:
|
152 |
-
video_bytes = file.read()
|
153 |
-
st.download_button(
|
154 |
-
label="π₯ Download Processed Video",
|
155 |
-
data=video_bytes,
|
156 |
-
file_name=f"drowsiness_detected_{uploaded_video.name}",
|
157 |
-
mime="video/mp4"
|
158 |
-
)
|
159 |
-
except Exception as e:
|
160 |
-
st.error(f"An error occurred during video processing: {e}")
|
161 |
-
finally:
|
162 |
-
# Cleanup temporary files
|
163 |
try:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# --- NEW: Import your refactored video processing logic ---
|
22 |
from video_processor import process_video_with_progress
|
23 |
|
24 |
+
# --- FIXED: Model path handling ---
|
25 |
+
model_path = "best.pt"
|
26 |
+
if not os.path.exists(model_path):
|
27 |
+
st.error(f"Model file '{model_path}' not found. Please ensure it's included in your deployment.")
|
28 |
+
st.stop()
|
29 |
|
30 |
# --- Page Configuration ---
|
31 |
st.set_page_config(
|
|
|
39 |
st.sidebar.title("π Driver Distraction System")
|
40 |
st.sidebar.write("Choose an option below:")
|
41 |
|
42 |
+
# --- FIXED: Disable webcam feature for cloud deployment ---
|
43 |
+
if os.getenv("SPACE_ID"): # Running on Hugging Face Spaces
|
44 |
+
available_features = [
|
45 |
+
"Distraction System",
|
46 |
+
"Video Drowsiness Detection"
|
47 |
+
]
|
48 |
+
st.sidebar.info("π‘ Note: Real-time webcam detection is not available in cloud deployment.")
|
49 |
+
else:
|
50 |
+
available_features = [
|
51 |
+
"Distraction System",
|
52 |
+
"Video Drowsiness Detection",
|
53 |
+
"Real-time Drowsiness Detection"
|
54 |
+
]
|
55 |
+
|
56 |
# --- Sidebar navigation ---
|
57 |
+
page = st.sidebar.radio("Select Feature", available_features)
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# --- Class Labels (for YOLO model) ---
|
60 |
st.sidebar.subheader("Class Names")
|
|
|
74 |
if file_type == "Image":
|
75 |
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
76 |
if uploaded_file is not None:
|
77 |
+
try:
|
78 |
+
image = Image.open(uploaded_file).convert('RGB')
|
79 |
+
image_np = np.array(image)
|
80 |
+
col1, col2 = st.columns([1, 1])
|
81 |
+
with col1:
|
82 |
+
st.subheader("Uploaded Image")
|
83 |
+
st.image(image, caption="Original Image", use_container_width=True)
|
84 |
+
with col2:
|
85 |
+
st.subheader("Detection Results")
|
86 |
+
|
87 |
+
# Load model with error handling
|
88 |
+
try:
|
89 |
+
model = YOLO(model_path)
|
90 |
+
start_time = time.time()
|
91 |
+
results = model(image_np)
|
92 |
+
end_time = time.time()
|
93 |
+
prediction_time = end_time - start_time
|
94 |
+
|
95 |
+
result = results[0]
|
96 |
+
if len(result.boxes) > 0:
|
97 |
+
boxes = result.boxes
|
98 |
+
confidences = boxes.conf.cpu().numpy()
|
99 |
+
classes = boxes.cls.cpu().numpy()
|
100 |
+
class_names_dict = result.names
|
101 |
+
max_conf_idx = confidences.argmax()
|
102 |
+
predicted_class = class_names_dict[int(classes[max_conf_idx])]
|
103 |
+
confidence_score = confidences[max_conf_idx]
|
104 |
+
st.markdown(f"### Predicted Class: **{predicted_class}**")
|
105 |
+
st.markdown(f"### Confidence Score: **{confidence_score:.4f}** ({confidence_score*100:.1f}%)")
|
106 |
+
st.markdown(f"Inference Time: {prediction_time:.2f} seconds")
|
107 |
+
else:
|
108 |
+
st.warning("No distractions detected.")
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Error loading or running model: {str(e)}")
|
111 |
+
st.info("Please ensure the model file 'best.pt' is present and valid.")
|
112 |
+
except Exception as e:
|
113 |
+
st.error(f"Error processing image: {str(e)}")
|
114 |
+
|
115 |
+
elif file_type == "Video":
|
116 |
+
uploaded_file = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
|
117 |
+
if uploaded_file is not None:
|
118 |
+
try:
|
119 |
+
# Create a temporary file to hold the uploaded video
|
120 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
121 |
+
tfile.write(uploaded_file.read())
|
122 |
+
temp_input_path = tfile.name
|
123 |
+
temp_output_path = tempfile.mktemp(suffix="_processed.mp4")
|
124 |
+
|
125 |
+
st.subheader("Original Video Preview")
|
126 |
+
st.video(uploaded_file)
|
127 |
+
|
128 |
+
if st.button("Process Video for Distraction Detection"):
|
129 |
+
progress_bar = st.progress(0, text="Preparing to process video...")
|
130 |
+
|
131 |
+
try:
|
132 |
+
model = YOLO(model_path)
|
133 |
+
cap = cv.VideoCapture(temp_input_path)
|
134 |
+
total_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
|
135 |
+
fps = cap.get(cv.CAP_PROP_FPS)
|
136 |
+
|
137 |
+
# Get video properties
|
138 |
+
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
139 |
+
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
140 |
+
|
141 |
+
# Setup video writer
|
142 |
+
fourcc = cv.VideoWriter_fourcc(*'mp4v')
|
143 |
+
out = cv.VideoWriter(temp_output_path, fourcc, fps, (width, height))
|
144 |
+
|
145 |
+
frame_count = 0
|
146 |
+
detections = []
|
147 |
+
|
148 |
+
while True:
|
149 |
+
ret, frame = cap.read()
|
150 |
+
if not ret:
|
151 |
+
break
|
152 |
+
|
153 |
+
frame_count += 1
|
154 |
+
|
155 |
+
# Process frame with YOLO
|
156 |
+
results = model(frame)
|
157 |
+
result = results[0]
|
158 |
+
|
159 |
+
# Draw detections on frame
|
160 |
+
annotated_frame = result.plot()
|
161 |
+
out.write(annotated_frame)
|
162 |
+
|
163 |
+
# Store detection info
|
164 |
+
if len(result.boxes) > 0:
|
165 |
+
boxes = result.boxes
|
166 |
+
for i in range(len(boxes)):
|
167 |
+
conf = boxes.conf[i].cpu().numpy()
|
168 |
+
cls = int(boxes.cls[i].cpu().numpy())
|
169 |
+
class_name = result.names[cls]
|
170 |
+
detections.append({
|
171 |
+
'frame': frame_count,
|
172 |
+
'class': class_name,
|
173 |
+
'confidence': conf
|
174 |
+
})
|
175 |
+
|
176 |
+
# Update progress
|
177 |
+
progress = int((frame_count / total_frames) * 100)
|
178 |
+
progress_bar.progress(progress, text=f"Processing frame {frame_count}/{total_frames}")
|
179 |
+
|
180 |
+
cap.release()
|
181 |
+
out.release()
|
182 |
+
|
183 |
+
st.success("Video processed successfully!")
|
184 |
+
|
185 |
+
# Show results
|
186 |
+
st.subheader("Detection Results")
|
187 |
+
if detections:
|
188 |
+
# Count detections by class
|
189 |
+
class_counts = {}
|
190 |
+
for det in detections:
|
191 |
+
class_name = det['class']
|
192 |
+
if class_name not in class_counts:
|
193 |
+
class_counts[class_name] = 0
|
194 |
+
class_counts[class_name] += 1
|
195 |
+
|
196 |
+
# Display metrics
|
197 |
+
cols = st.columns(len(class_counts))
|
198 |
+
for i, (class_name, count) in enumerate(class_counts.items()):
|
199 |
+
cols[i].metric(class_name.title(), count)
|
200 |
+
else:
|
201 |
+
st.info("No distractions detected in the video.")
|
202 |
+
|
203 |
+
# Offer processed video for download
|
204 |
+
if os.path.exists(temp_output_path):
|
205 |
+
with open(temp_output_path, "rb") as file:
|
206 |
+
video_bytes = file.read()
|
207 |
+
st.download_button(
|
208 |
+
label="π₯ Download Processed Video",
|
209 |
+
data=video_bytes,
|
210 |
+
file_name=f"distraction_detected_{uploaded_file.name}",
|
211 |
+
mime="video/mp4"
|
212 |
+
)
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
st.error(f"Error processing video: {str(e)}")
|
216 |
+
finally:
|
217 |
+
# Cleanup
|
218 |
+
try:
|
219 |
+
if os.path.exists(temp_input_path):
|
220 |
+
os.unlink(temp_input_path)
|
221 |
+
if os.path.exists(temp_output_path):
|
222 |
+
os.unlink(temp_output_path)
|
223 |
+
except Exception as e:
|
224 |
+
st.warning(f"Failed to clean up temporary files: {e}")
|
225 |
+
|
226 |
+
except Exception as e:
|
227 |
+
st.error(f"Error handling video upload: {str(e)}")
|
228 |
+
|
229 |
+
# --- Feature: Real-time Drowsiness Detection (Only for local) ---
|
230 |
elif page == "Real-time Drowsiness Detection":
|
231 |
st.title("π§ Real-time Drowsiness Detection")
|
232 |
+
|
233 |
+
if os.getenv("SPACE_ID"): # Running on Hugging Face Spaces
|
234 |
+
st.error("β οΈ Real-time webcam detection is not available in cloud deployment.")
|
235 |
+
st.info("This feature requires direct access to your camera and only works in local environments.")
|
236 |
+
st.markdown("""
|
237 |
+
**To use this feature:**
|
238 |
+
1. Download the code to your local machine
|
239 |
+
2. Install the required dependencies
|
240 |
+
3. Run the application locally with `streamlit run streamlit_app.py`
|
241 |
+
""")
|
242 |
+
else:
|
243 |
+
st.info("This feature requires a local webcam and will open a new window.")
|
244 |
+
st.warning("This feature is intended for local use and will not function in cloud deployment.")
|
245 |
+
if st.button("Start Drowsiness Detection"):
|
246 |
+
try:
|
247 |
+
subprocess.Popen(["python3", "drowsiness_detection.py", "--mode", "webcam"])
|
248 |
+
st.success("Attempted to launch detection window. Please check your desktop.")
|
249 |
+
except Exception as e:
|
250 |
+
st.error(f"Failed to start process: {e}")
|
251 |
|
252 |
# --- Feature: Video Drowsiness Detection ---
|
253 |
elif page == "Video Drowsiness Detection":
|
|
|
256 |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv", "webm"])
|
257 |
|
258 |
if uploaded_video is not None:
|
259 |
+
try:
|
260 |
+
# Create a temporary file to hold the uploaded video
|
261 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
262 |
+
tfile.write(uploaded_video.read())
|
263 |
+
temp_input_path = tfile.name
|
264 |
+
temp_output_path = tempfile.mktemp(suffix="_processed.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
st.subheader("Original Video Preview")
|
267 |
+
st.video(uploaded_video)
|
268 |
+
|
269 |
+
if st.button("Process Video for Drowsiness Detection"):
|
270 |
+
progress_bar = st.progress(0, text="Preparing to process video...")
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
# --- Define a callback function for the progress bar ---
|
273 |
+
def streamlit_progress_callback(current, total):
|
274 |
+
if total > 0:
|
275 |
+
percent_complete = int((current / total) * 100)
|
276 |
+
progress_bar.progress(percent_complete, text=f"Analyzing frame {current}/{total}...")
|
277 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
try:
|
279 |
+
with st.spinner("Processing video... This may take a while."):
|
280 |
+
# Call your robust video processing function
|
281 |
+
stats = process_video_with_progress(
|
282 |
+
input_path=temp_input_path,
|
283 |
+
output_path=temp_output_path,
|
284 |
+
progress_callback=streamlit_progress_callback
|
285 |
+
)
|
286 |
+
|
287 |
+
progress_bar.progress(100, text="Video processing completed!")
|
288 |
+
st.success("Video processed successfully!")
|
289 |
+
|
290 |
+
# Display the returned statistics
|
291 |
+
st.subheader("Detection Results")
|
292 |
+
col1, col2, col3 = st.columns(3)
|
293 |
+
col1.metric("Drowsy Events", stats.get('drowsy_events', 0))
|
294 |
+
col2.metric("Yawn Events", stats.get('yawn_events', 0))
|
295 |
+
col3.metric("Head Down Events", stats.get('head_down_events', 0))
|
296 |
+
|
297 |
+
# Offer the processed video for download
|
298 |
+
if os.path.exists(temp_output_path):
|
299 |
+
with open(temp_output_path, "rb") as file:
|
300 |
+
video_bytes = file.read()
|
301 |
+
st.download_button(
|
302 |
+
label="π₯ Download Processed Video",
|
303 |
+
data=video_bytes,
|
304 |
+
file_name=f"drowsiness_detected_{uploaded_video.name}",
|
305 |
+
mime="video/mp4"
|
306 |
+
)
|
307 |
+
except Exception as e:
|
308 |
+
st.error(f"An error occurred during video processing: {e}")
|
309 |
+
st.info("Please ensure all required model files are present and the video format is supported.")
|
310 |
+
finally:
|
311 |
+
# Cleanup temporary files
|
312 |
+
try:
|
313 |
+
if os.path.exists(temp_input_path):
|
314 |
+
os.unlink(temp_input_path)
|
315 |
+
if os.path.exists(temp_output_path):
|
316 |
+
os.unlink(temp_output_path)
|
317 |
+
except Exception as e_clean:
|
318 |
+
st.warning(f"Failed to clean up temporary files: {e_clean}")
|
319 |
+
|
320 |
+
except Exception as e:
|
321 |
+
st.error(f"Error handling video upload: {str(e)}")
|
322 |
+
|
323 |
+
# --- Footer ---
|
324 |
+
st.sidebar.markdown("---")
|
325 |
+
st.sidebar.markdown("### π Notes")
|
326 |
+
st.sidebar.markdown("""
|
327 |
+
- **Image Detection**: Upload JPG, PNG images
|
328 |
+
- **Video Detection**: Upload MP4, AVI, MOV videos
|
329 |
+
- **Cloud Limitations**: Webcam access not available in cloud deployment
|
330 |
+
- **Model**: Uses YOLO for distraction detection
|
331 |
+
""")
|