File size: 7,771 Bytes
c09bcc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import itertools
import math
import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from accelerate import Accelerator
from accelerate.utils import set_seed
from diffusers import DDPMScheduler, StableDiffusionPipeline
from diffusers.optimization import get_scheduler
import bitsandbytes as bnb
from tqdm.auto import tqdm
from argparse import Namespace
import logging
from dataset import DreamBoothDataset

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

def load_models(pretrained_model_name_or_path):
    from transformers import CLIPTextModel, CLIPTokenizer
    from diffusers import AutoencoderKL, UNet2DConditionModel

    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer')
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder')
    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae')
    unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet')
    
    return text_encoder, vae, unet, tokenizer

def training_function(args, text_encoder, vae, unet, tokenizer):
    set_seed(args.seed)
    accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)

    vae.requires_grad_(False)
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()

    optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
    optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
    noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")

    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    def collate_fn(examples):
        input_ids = [example["instance_prompt_ids"] for example in examples]
        pixel_values = [example["instance_images"] for example in examples]

        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]

        pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float()
        input_ids = tokenizer.pad({"input_ids": input_ids}, padding="max_length", return_tensors="pt", max_length=tokenizer.model_max_length).input_ids

        return {"input_ids": input_ids, "pixel_values": pixel_values}

    train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn)

    unet, optimizer, train_dataloader = accelerator.prepare(unet, optimizer, train_dataloader)
    if args.train_text_encoder:
        text_encoder, optimizer, train_dataloader = accelerator.prepare(text_encoder, optimizer, train_dataloader)

    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        class_images_dir.mkdir(parents=True, exist_ok=True)

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    vae.to(accelerator.device, dtype=weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.train_text_encoder:
        text_encoder.train()
    unet.train()

    global_step = 0
    for epoch in range(args.num_train_epochs):
        progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
        progress_bar.set_description(f"Epoch {epoch}")

        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                latents = latents * 0.18215

                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device).long()

                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
                encoder_hidden_states = text_encoder(batch["input_ids"])[0]

                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                accelerator.backward(loss)

                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), 1.0)
                    if args.train_text_encoder:
                        accelerator.clip_grad_norm_(text_encoder.parameters(), 1.0)

                optimizer.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                global_step += 1

                logs = {"loss": loss.detach().item(), "lr": args.learning_rate}
                progress_bar.set_postfix(**logs)
                accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        progress_bar.close()
        accelerator.wait_for_everyone()

        if accelerator.is_main_process:
            if (epoch + 1) % args.save_interval == 0:
                pipeline = StableDiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path)
                pipeline.save_pretrained(args.output_dir)

    accelerator.end_training()

def parse_args():
    args = Namespace(
        pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
        instance_data_dir="datasets/imagedata/images",
        class_data_dir="./class_images",
        output_dir="./output",
        instance_prompt="a photo of yash Kothari",
        class_prompt="A photo of Yash Kothari with medium, dark hair and a full beard, smiling slightly",
        resolution=512,
        center_crop=False,
        train_text_encoder=True,
        gradient_accumulation_steps=1,
        mixed_precision="fp16",
        learning_rate=5e-6,
        use_8bit_adam=True,
        train_batch_size=4,
        num_train_epochs=100,
        save_interval=10,
        max_train_steps=2000,
        gradient_checkpointing=False,
        with_prior_preservation=True,
        seed=42,
    )
    return args

if __name__ == "__main__":
    args = parse_args()
    text_encoder, vae, unet, tokenizer = load_models(args.pretrained_model_name_or_path)
    training_function(args, text_encoder, vae, unet, tokenizer)