File size: 632 Bytes
c09bcc2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline
from transformers import CLIPTextModel, CLIPTokenizer

def load_models(pretrained_model_name_or_path):
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder")
    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
    unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
    return text_encoder, vae, unet, tokenizer