|
import os
|
|
from diffusers import StableDiffusionPipeline
|
|
import torch
|
|
|
|
def generate_images(prompt, model_path="output/checkpoint-500/", num_images=1):
|
|
required_files = ['pytorch_model.bin', 'model.safetensors', 'tf_model.h5', 'model.ckpt.index', 'flax_model.msgpack']
|
|
|
|
if not any(os.path.exists(os.path.join(model_path, file)) for file in required_files):
|
|
raise EnvironmentError(
|
|
f"Error no file named {', '.join(required_files)} found in directory {model_path}. "
|
|
"Ensure your model is correctly saved."
|
|
)
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
|
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
images = pipe(prompt, num_images=num_images).images
|
|
return images
|
|
|