|
import streamlit as st
|
|
from PIL import Image
|
|
import os
|
|
from utils.yolo_processor import YOLOProcessor
|
|
import tempfile
|
|
import numpy as np
|
|
import base64
|
|
import cv2
|
|
|
|
processed_image = None
|
|
processed_video_path = None
|
|
|
|
def detect_fall(image, model_path):
|
|
model = YOLOProcessor(model_path)
|
|
result_image = model.detect_fall(image)
|
|
return result_image
|
|
|
|
def main():
|
|
global processed_image, processed_video_path
|
|
|
|
st.title("Fall Detection with YOLO")
|
|
st.markdown("---")
|
|
option = st.sidebar.selectbox("Choose an option", ["Image", "Video"])
|
|
|
|
if option == "Image":
|
|
st.subheader("Upload Image")
|
|
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
|
|
|
if uploaded_file is not None:
|
|
image = Image.open(uploaded_file)
|
|
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
st.markdown("---")
|
|
st.subheader("Detecting Fall...")
|
|
|
|
if processed_image is None:
|
|
with st.spinner('Detecting fall...'):
|
|
processed_image = detect_fall(image, "assets/best.pt")
|
|
st.image(processed_image, caption='Result', use_column_width=True)
|
|
|
|
|
|
if st.button('Download Result Image'):
|
|
download_image(processed_image, filename='result_image.png')
|
|
|
|
elif option == "Video":
|
|
st.subheader("Upload Video")
|
|
uploaded_file = st.file_uploader("Choose a video", type=["mp4"])
|
|
|
|
if uploaded_file is not None:
|
|
st.markdown("---")
|
|
st.subheader("Processing and Detecting Fall...")
|
|
|
|
temp_dir = tempfile.TemporaryDirectory()
|
|
temp_file_path = os.path.join(temp_dir.name, "uploaded_video.mp4")
|
|
with open(temp_file_path, "wb") as f:
|
|
f.write(uploaded_file.read())
|
|
|
|
output_path = os.path.join(temp_dir.name, "processed_video.mp4")
|
|
|
|
if processed_video_path is None:
|
|
with st.spinner('Processing and detecting fall...'):
|
|
yolo_processor = YOLOProcessor("assets/best.pt")
|
|
yolo_processor.process_video(temp_file_path, output_path)
|
|
processed_video_path = output_path
|
|
|
|
st.subheader("Result Video")
|
|
st.video(processed_video_path)
|
|
|
|
if st.button('Download Result Video'):
|
|
download_file(processed_video_path, filename='processed_video.mp4')
|
|
|
|
temp_dir.cleanup()
|
|
|
|
def download_image(image, filename):
|
|
if isinstance(image, np.ndarray):
|
|
image = Image.fromarray(image)
|
|
image.save(filename)
|
|
with open(filename, "rb") as f:
|
|
image_bytes = f.read()
|
|
b64 = base64.b64encode(image_bytes).decode()
|
|
href = f'<a href="data:image/png;base64,{b64}" download="{filename}">Click here to download {filename}</a>'
|
|
st.markdown(href, unsafe_allow_html=True)
|
|
|
|
def download_file(file_path, filename):
|
|
with open(file_path, 'rb') as f:
|
|
data = f.read()
|
|
b64 = base64.b64encode(data).decode()
|
|
href = f'<a href="data:file/mp4;base64,{b64}" download="{filename}">Click here to download {filename}</a>'
|
|
st.markdown(href, unsafe_allow_html=True)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|