|
import streamlit as st
|
|
from ultralytics import YOLO
|
|
import tempfile
|
|
import os
|
|
import cv2
|
|
|
|
class YOLOProcessor:
|
|
def __init__(self, model_path):
|
|
self.model = YOLO(model_path)
|
|
|
|
def detect_fall(self, image):
|
|
result = self.model.predict(image, conf=0.5)
|
|
result_image = result[0].plot()
|
|
result_image = cv2.cvtColor(result_image,cv2.COLOR_BGR2RGB)
|
|
return result_image
|
|
|
|
def process_video(self, input_path, output_path):
|
|
vid = cv2.VideoCapture(input_path)
|
|
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = int(vid.get(cv2.CAP_PROP_FPS))
|
|
output = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
|
|
|
while vid.isOpened():
|
|
ret, frame = vid.read()
|
|
|
|
if ret:
|
|
result = self.model.predict(frame, conf=0.5)
|
|
processed_frame = result[0].plot()
|
|
output.write(processed_frame)
|
|
else:
|
|
break
|
|
|
|
vid.release()
|
|
output.release()
|
|
|
|
|