# predict_model.py import pandas as pd import joblib # predict_model.py import pandas as pd import joblib class InsuranceClaimPredictor: def __init__(self, model_path): self.model_path = model_path self.model = self.load_model() def load_model(self): # Load the model loaded_model = joblib.load(self.model_path) return loaded_model def predict(self, data): # Make predictions predictions = self.model.predict(data) return predictions if __name__ == "__main__": predictor = InsuranceClaimPredictor('model/insurance_claim_prediction_model.joblib') # # Example of a person who is less likely to make an insurance claim # unseen_data_non_claim = pd.DataFrame({ # 'age': [25], # Younger age # 'sex': ['female'], # Female (just an example, gender may not significantly affect the outcome) # 'bmi': [22.0], # Lower BMI # 'children': [0], # No children # 'smoker': ['no'], # Non-smoker # 'region': ['southwest'], # Region (doesn't typically affect claims, chosen arbitrarily) # 'charges': [1000] # Lower medical expenses # }) # predictions = predictor.predict(unseen_data_non_claim) # print("Predictions for the unseen data:", predictions) #Example of how to use the function unseen_data = pd.DataFrame({ 'age': [40], 'sex': ['male'], 'bmi': [25.3], 'children': [2], 'smoker': ['no'], 'region': ['southeast'], 'charges': [2900] }) predictions = predictor.predict(unseen_data) print("Predictions for the unseen data:", predictions)