File size: 8,603 Bytes
6e0b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bc246
6e0b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bc246
6e0b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bc246
6e0b1c1
 
 
31bc246
 
 
6e0b1c1
31bc246
 
 
 
 
 
 
 
 
 
6e0b1c1
 
31bc246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0b1c1
31bc246
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# import re 
# import PyPDF2
# from langchain_community.embeddings import OllamaEmbeddings
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain.chains import ConversationalRetrievalChain
# from langchain_community.chat_models import ChatOllama
# from langchain_groq import ChatGroq
# from langchain.memory import ChatMessageHistory, ConversationBufferMemory
# import chainlit as cl
# from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
# import logging
# import pypandoc
# import pdfkit
# from paddleocr import PaddleOCR
# import fitz  
# import asyncio
# from langchain_nomic.embeddings import NomicEmbeddings

# llm_groq = ChatGroq(
#             model_name='llama3-70b-8192'
#     )

# # Initialize anonymizer
# anonymizer = PresidioReversibleAnonymizer(analyzed_fields=['PERSON', 'EMAIL_ADDRESS', 'PHONE_NUMBER', 'IBAN_CODE', 'CREDIT_CARD', 'CRYPTO', 'IP_ADDRESS', 'LOCATION', 'DATE_TIME', 'NRP', 'MEDICAL_LICENSE', 'URL'], faker_seed=18)

# def extract_text_from_pdf(file_path):
#     pdf = PyPDF2.PdfReader(file_path)
#     pdf_text = ""
#     for page in pdf.pages:
#         pdf_text += page.extract_text()
#     return pdf_text

# def has_sufficient_selectable_text(page, threshold=50):
#     text = page.extract_text()
#     if len(text.strip()) > threshold:
#         return True
#     return False

# async def get_text(file_path):
#     text = ""
#     try:
#         logging.info("Starting OCR process for file: %s", file_path)
#         extension = file_path.split(".")[-1].lower()
#         allowed_extension = ["jpg", "jpeg", "png", "pdf", "docx"]
#         if extension not in allowed_extension:
#             error = "Not a valid File. Allowed Format are jpg, jpeg, png, pdf, docx"
#             logging.error(error)
#             return {"error": error}
        
#         if extension == "docx":
#             file_path = convert_docx_to_pdf(file_path)
        
#         ocr = PaddleOCR(use_angle_cls=True, lang='en')
#         result = ocr.ocr(file_path, cls=True)
#         for idx in range(len(result)):
#             res = result[idx]
#             for line in res:
#                 text += line[1][0] + " "
#         logging.info("OCR process completed successfully for file: %s", file_path)
#     except Exception as e:
#         logging.error("Error occurred during OCR process for file %s: %s", file_path, e)
#         text = "Error occurred during OCR process."
#     logging.info("Extracted text: %s", text)
#     return text

# def convert_docx_to_pdf(input_path):
#     html_path = input_path.replace('.docx', '.html')
#     output_path = ".".join(input_path.split(".")[:-1]) + ".pdf"
#     pypandoc.convert_file(input_path, 'html', outputfile=html_path)
#     pdfkit.from_file(html_path, output_path)
#     logging.info("DOCX Format Handled")
#     return output_path

# async def extract_text_from_mixed_pdf(file_path):
#     pdf = PyPDF2.PdfReader(file_path)
#     ocr = PaddleOCR(use_angle_cls=True, lang='en')
#     pdf_text = ""
#     for i, page in enumerate(pdf.pages):
#         text = page.extract_text()
#         if not has_sufficient_selectable_text(page):
#             logging.info(f"Page {i+1} has insufficient selectable text, performing OCR.")
#             pdf_document = fitz.open(file_path)
#             pdf_page = pdf_document.load_page(i)
#             pix = pdf_page.get_pixmap()
#             image_path = f"page_{i+1}.png"
#             pix.save(image_path)
#             result = ocr.ocr(image_path, cls=True)
#             for idx in range(len(result)):
#                 res = result[idx]
#                 for line in res:
#                     text += line[1][0] + " "
#         pdf_text += text
#     return pdf_text

# @cl.on_chat_start
# async def on_chat_start():
    
#     files = None # Initialize variable to store uploaded files

#     # Wait for the user to upload a file
#     while files is None:
#         files = await cl.AskFileMessage(
#             content="Please upload a pdf file to begin!",
#             # accept=["application/pdf"],
#             accept=["application/pdf", "image/jpeg", "image/png", "application/vnd.openxmlformats-officedocument.wordprocessingml.document"],
#             max_size_mb=100,
#             timeout=180, 
#         ).send()

#     file = files[0] # Get the first uploaded file
    
#     # Inform the user that processing has started
#     msg = cl.Message(content=f"Processing `{file.name}`...")
#     await msg.send()

#     # Extract text from PDF, checking for selectable and handwritten text
#     if file.name.endswith('.pdf'):
#         pdf_text = await extract_text_from_mixed_pdf(file.path)
#     else:
#         pdf_text = await get_text(file.path)

#     # Anonymize the text
#     anonymized_text = anonymizer.anonymize(
#         pdf_text
#     )
    
#     embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
    
#     docsearch = await cl.make_async(Chroma.from_texts)(
#         [anonymized_text], embeddings, metadatas=[{"source": "0-pl"}]
#     )
#     # }
    
#     # Initialize message history for conversation
#     message_history = ChatMessageHistory()
    
#     # Memory for conversational context
#     memory = ConversationBufferMemory(
#         memory_key="chat_history",
#         output_key="answer",
#         chat_memory=message_history,
#         return_messages=True,
#     )

#     # Create a chain that uses the Chroma vector store
#     chain = ConversationalRetrievalChain.from_llm(
#         llm = llm_groq,
#         chain_type="stuff",
#         retriever=docsearch.as_retriever(),
#         memory=memory,
#         return_source_documents=True,
#     )

#     # Let the user know that the system is ready
#     msg.content = f"Processing `{file.name}` done. You can now ask questions!"
#     await msg.update()
#     # Store the chain in user session
#     cl.user_session.set("chain", chain)


# @cl.on_message
# async def main(message: cl.Message):
        
#     # Retrieve the chain from user session
#     chain = cl.user_session.get("chain") 
#     # Callbacks happen asynchronously/parallel 
#     cb = cl.AsyncLangchainCallbackHandler()
    
#     # Call the chain with user's message content
#     res = await chain.ainvoke(message.content, callbacks=[cb])
#     answer = anonymizer.deanonymize(
#         res["answer"]
#     )  
#     text_elements = [] 
            
#     # Return results
#     await cl.Message(content=answer, elements=text_elements).send()




# v2:
@cl.on_chat_start
async def on_chat_start():
    
    files = None  # Initialize variable to store uploaded files

    # Wait for the user to upload a file
    while files is None:
        files = await cl.AskFileMessage(
            content="Please upload a pdf file to begin!",
            accept=["application/pdf", "image/jpeg", "image/png", "application/vnd.openxmlformats-officedocument.wordprocessingml.document"],
            max_size_mb=100,
            timeout=180, 
        ).send()

    file = files[0]  # Get the first uploaded file

    # Inform the user that processing has started
    msg = cl.Message(content=f"Processing `{file.name}`...")
    await msg.send()

    # Extract text from PDF, checking for selectable and handwritten text
    if file.name.endswith('.pdf'):
        pdf_text = await extract_text_from_mixed_pdf(file.path)
    else:
        pdf_text = await get_text(file.path)

    # Anonymize the text
    anonymized_text = anonymizer.anonymize(
        pdf_text
    )
    
    embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
    
    docsearch = await cl.make_async(Chroma.from_texts)(
        [anonymized_text], embeddings, metadatas=[{"source": "0-pl"}]
    )
    
    # Initialize message history for conversation
    message_history = ChatMessageHistory()
    
    # Memory for conversational context
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key="answer",
        chat_memory=message_history,
        return_messages=True,
    )

    # Create a chain that uses the Chroma vector store
    chain = ConversationalRetrievalChain.from_llm(
        llm = llm_groq,
        chain_type="stuff",
        retriever=docsearch.as_retriever(),
        memory=memory,
        return_source_documents=True,
    )

    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()
    
    # Store the chain in user session
    cl.user_session.set("chain", chain)