File size: 19,504 Bytes
e329747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
from sklearn.ensemble import IsolationForest
from sklearn.linear_model import LinearRegression
import random
import calendar

# Set random seed for reproducibility
np.random.seed(42)

def generate_device_data(num_days=90, device_type="home"):
    """Generate synthetic energy consumption data for devices with enhanced patterns"""
    dates = pd.date_range(end=datetime.now(), periods=num_days*24, freq='h')
    
    if device_type == "home":
        devices = {
            'HVAC': {'base': 8, 'var': 4, 'peak_hours': [14, 15, 16, 17], 'weekend_factor': 1.2},
            'Refrigerator': {'base': 2, 'var': 0.5, 'peak_hours': [12, 13, 14], 'weekend_factor': 1.0},
            'Washing Machine': {'base': 1, 'var': 0.8, 'peak_hours': [10, 19, 20], 'weekend_factor': 1.5},
            'Lighting': {'base': 1.5, 'var': 0.3, 'peak_hours': [18, 19, 20, 21], 'weekend_factor': 1.1},
            'Television': {'base': 0.5, 'var': 0.2, 'peak_hours': [20, 21, 22], 'weekend_factor': 1.3}
        }
    else:
        devices = {
            'HVAC System': {'base': 20, 'var': 8, 'peak_hours': [14, 15, 16, 17], 'weekend_factor': 0.6},
            'Server Room': {'base': 15, 'var': 3, 'peak_hours': [12, 13, 14], 'weekend_factor': 0.9},
            'Office Equipment': {'base': 10, 'var': 4, 'peak_hours': [9, 10, 11, 14, 15], 'weekend_factor': 0.4},
            'Lighting': {'base': 8, 'var': 2, 'peak_hours': [9, 10, 11, 14, 15], 'weekend_factor': 0.5},
            'Kitchen Appliances': {'base': 5, 'var': 2, 'peak_hours': [12, 13], 'weekend_factor': 0.3}
        }

    data = []
    
    for date in dates:
        hour = date.hour
        is_weekend = date.weekday() >= 5
        
        for device, params in devices.items():
            # Add seasonal variation
            seasonal_factor = 1 + 0.3 * np.sin(2 * np.pi * date.dayofyear / 365)
            
            # Add peak hour variation
            peak_factor = 1.5 if hour in params['peak_hours'] else 1
            
            # Add weekend variation
            weekend_factor = params['weekend_factor'] if is_weekend else 1
            
            # Base consumption with random variation
            consumption = (params['base'] * seasonal_factor * peak_factor * weekend_factor + 
                         np.random.normal(0, params['var']))
            
            # Add some anomalies (3% chance)
            if np.random.random() < 0.03:
                consumption *= np.random.choice([1.5, 2.0, 0.5])
            
            data.append({
                'Date': date,
                'Device': device,
                'Consumption': max(0, consumption),
                'Hour': hour,
                'Weekday': date.strftime('%A'),
                'Weekend': is_weekend
            })
    
    return pd.DataFrame(data)

def detect_anomalies(df):
    """Enhanced anomaly detection using Isolation Forest with multiple features"""
    iso_forest = IsolationForest(contamination=0.03, random_state=42)
    by_device = df.groupby('Device')
    
    anomalies = []
    for device, group in by_device:
        # Use multiple features for anomaly detection
        features = group[['Consumption', 'Hour']].copy()
        features['Weekend'] = group['Weekend'].astype(int)
        
        predictions = iso_forest.fit_predict(features)
        anomaly_indices = predictions == -1
        
        anomaly_data = group[anomaly_indices]
        
        for _, row in anomaly_data.iterrows():
            anomalies.append({
                'Device': device,
                'Date': row['Date'],
                'Consumption': row['Consumption'],
                'Hour': row['Hour'],
                'Weekday': row['Weekday']
            })
    
    return pd.DataFrame(anomalies)

def generate_insights(df):
    """Generate detailed insights from the energy consumption data"""
    insights = []
    
    # Peak usage analysis
    peak_hours = df.groupby(['Device', 'Hour'])['Consumption'].mean().reset_index()
    for device in df['Device'].unique():
        device_peaks = peak_hours[peak_hours['Device'] == device].nlargest(3, 'Consumption')
        insights.append({
            'Type': 'Peak Hours',
            'Device': device,
            'Description': f"Peak usage hours: {', '.join(map(str, device_peaks['Hour']))}",
            'Impact': 'High'
        })
    
    # Weekend vs Weekday analysis
    weekend_comparison = df.groupby(['Device', 'Weekend'])['Consumption'].mean().unstack()
    for device in weekend_comparison.index:
        diff_pct = ((weekend_comparison.loc[device, True] - weekend_comparison.loc[device, False]) / 
                    weekend_comparison.loc[device, False] * 100)
        insights.append({
            'Type': 'Weekend Pattern',
            'Device': device,
            'Description': f"{'Higher' if diff_pct > 0 else 'Lower'} weekend usage by {abs(diff_pct):.1f}%",
            'Impact': 'Medium' if abs(diff_pct) < 20 else 'High'
        })
    
    return pd.DataFrame(insights)

def predict_consumption(df, days_ahead=30):
    """Predict future consumption using linear regression with multiple features"""
    predictions = []
    
    for device in df['Device'].unique():
        device_data = df[df['Device'] == device].copy()
        
        # Create features for prediction
        device_data['Day_of_Week'] = device_data['Date'].dt.dayofweek
        device_data['Month'] = device_data['Date'].dt.month
        device_data['Day_of_Year'] = device_data['Date'].dt.dayofyear
        
        X = device_data[['Hour', 'Day_of_Week', 'Month', 'Day_of_Year']]
        y = device_data['Consumption']
        
        model = LinearRegression()
        model.fit(X, y)
        
        # Generate future dates
        future_dates = pd.date_range(
            start=df['Date'].max() + timedelta(hours=1),
            periods=days_ahead*24,
            freq='h'
        )
        
        future_X = pd.DataFrame({
            'Hour': future_dates.hour,
            'Day_of_Week': future_dates.dayofweek,
            'Month': future_dates.month,
            'Day_of_Year': future_dates.dayofyear
        })
        
        future_predictions = model.predict(future_X)
        
        for date, pred in zip(future_dates, future_predictions):
            predictions.append({
                'Date': date,
                'Device': device,
                'Predicted_Consumption': max(0, pred)
            })
    
    return pd.DataFrame(predictions)

# Streamlit UI
st.set_page_config(page_title="SEMS - Smart Energy Management System", layout="wide", initial_sidebar_state="expanded")

# Custom CSS
st.markdown("""
    <style>
    .main {
        padding: 2rem;
    }
    .stMetric {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
    }
    .insight-card {
        background-color: #ffffff;
        padding: 1rem;
        border-radius: 0.5rem;
        margin: 0.5rem 0;
        border: 1px solid #e0e0e0;
    }
    </style>
    """, unsafe_allow_html=True)

st.title("🏢 SEMS - Smart Energy Management System")

# Sidebar configuration
st.sidebar.title("Configuration")
user_type = st.sidebar.radio("Select User Type", ["Home", "Organization"])
analysis_period = st.sidebar.slider("Analysis Period (Days)", 30, 180, 90)

# Generate data
data = generate_device_data(num_days=analysis_period, device_type=user_type.lower())

# Main tabs
tab1, tab2, tab3, tab4 = st.tabs([
    "📊 Usage Dashboard",
    "🔍 Detailed Analysis",
    "⚠️ Peak Usage Detection",
    "📈 Forecasting"
])

with tab1:
    st.header("Energy Usage Dashboard")
    
    # Key metrics
    col1, col2, col3 = st.columns(3)
    
    total_consumption = data['Consumption'].sum()
    avg_daily = data.groupby(data['Date'].dt.date)['Consumption'].sum().mean()
    peak_hour = data.groupby('Hour')['Consumption'].mean().idxmax()
    
    col1.metric("Total Consumption", f"{total_consumption:.1f} kWh")
    col2.metric("Average Daily Usage", f"{avg_daily:.1f} kWh")
    col3.metric("Peak Usage Hour", f"{peak_hour}:00")
    
    # Daily consumption trend
    st.subheader("Daily Consumption Trend")
    daily_consumption = data.groupby(['Date', 'Device'])['Consumption'].sum().reset_index()
    fig = px.line(daily_consumption, x='Date', y='Consumption', color='Device',
                  title='Energy Consumption Over Time')
    fig.update_layout(height=400)
    st.plotly_chart(fig, use_container_width=True)
    
    # Device-wise distribution
    col1, col2 = st.columns(2)
    
    with col1:
        device_total = data.groupby('Device')['Consumption'].sum().sort_values(ascending=True)
        fig = px.bar(device_total, orientation='h',
                    title='Total Consumption by Device')
        st.plotly_chart(fig, use_container_width=True)
    
    with col2:
        hourly_avg = data.groupby(['Hour', 'Device'])['Consumption'].mean().reset_index()
        fig = px.line(hourly_avg, x='Hour', y='Consumption', color='Device',
                     title='Average Hourly Consumption Pattern')
        st.plotly_chart(fig, use_container_width=True)

with tab2:
    st.header("Detailed Analysis")
    
    # Weekday vs Weekend analysis
    st.subheader("Weekday vs Weekend Consumption")
    weekly_pattern = data.groupby(['Weekday', 'Device'])['Consumption'].mean().reset_index()
    fig = px.bar(weekly_pattern, x='Weekday', y='Consumption', color='Device',
                 title='Average Consumption by Day of Week')
    st.plotly_chart(fig, use_container_width=True)
    
    # Hourly heatmap
    st.subheader("Hourly Consumption Heatmap")
    hourly_data = data.pivot_table(
        values='Consumption',
        index='Hour',
        columns='Weekday',
        aggfunc='mean'
    )
    
    fig = px.imshow(hourly_data,
                    labels=dict(x="Day of Week", y="Hour of Day", color="Consumption"),
                    aspect="auto",
                    title="Consumption Intensity by Hour and Day")
    st.plotly_chart(fig, use_container_width=True)
    
    # Display insights
    st.subheader("Key Insights")
    insights = generate_insights(data)
    
    for _, insight in insights.iterrows():
        with st.expander(f"{insight['Device']} - {insight['Type']} (Impact: {insight['Impact']})"):
            st.write(insight['Description'])

with tab3:
    st.header("Peak Usage Detection")
    
    # Detect anomalies
    anomalies = detect_anomalies(data)
    
    if not anomalies.empty:
        st.warning(f"Detected {len(anomalies)} anomalies in energy consumption")
        
        # Plot with anomalies
        fig = go.Figure()
        
        for device in data['Device'].unique():
            device_data = data[data['Device'] == device]
            device_anomalies = anomalies[anomalies['Device'] == device]
            
            fig.add_trace(go.Scatter(
                x=device_data['Date'],
                y=device_data['Consumption'],
                name=f"{device} (normal)",
                mode='lines'
            ))
            
            if not device_anomalies.empty:
                fig.add_trace(go.Scatter(
                    x=device_anomalies['Date'],
                    y=device_anomalies['Consumption'],
                    name=f"{device} (anomaly)",
                    mode='markers',
                    marker=dict(size=10, symbol='x', color='red')
                ))
        
        fig.update_layout(
            title='Energy Consumption with Detected Anomalies',
            height=500
        )
        st.plotly_chart(fig, use_container_width=True)
        
        # Anomaly details in an expandable table
        st.subheader("Peak Usage Details")
        for device in anomalies['Device'].unique():
            device_anomalies = anomalies[anomalies['Device'] == device].copy()
            device_anomalies['Date'] = device_anomalies['Date'].dt.strftime('%Y-%m-%d %H:%M')
            
            with st.expander(f"Anomalies for {device}"):
                st.dataframe(
                    device_anomalies[['Date', 'Consumption', 'Hour', 'Weekday']],
                    use_container_width=True
                )

with tab4:
    st.header("Consumption Forecasting")
    
    # Generate predictions
    predictions = predict_consumption(data)
    
    # Plot historical data and predictions
    st.subheader("Consumption Forecast")
    
    for device in predictions['Device'].unique():
        with st.expander(f"Forecast for {device}"):
            historical = data[data['Device'] == device]
            device_predictions = predictions[predictions['Device'] == device]
            
            fig = go.Figure()
            
            # Historical data
            fig.add_trace(go.Scatter(
                x=historical['Date'],
                y=historical['Consumption'],
                name='Historical',
                line=dict(color='blue')
            ))
            
            # Predictions
            fig.add_trace(go.Scatter(
                x=device_predictions['Date'],
                y=device_predictions['Predicted_Consumption'],
                name='Forecast',
                line=dict(color='red', dash='dash')
            ))
            
            fig.update_layout(
                title=f'Energy Consumption Forecast - {device}',
                xaxis_title='Date',
                yaxis_title='Consumption (kWh)',
                height=400
            )
            
            st.plotly_chart(fig, use_container_width=True)
            
            # Summary statistics
            col1, col2, col3 = st.columns(3)
            
            avg_historical = historical['Consumption'].mean()
            avg_predicted = device_predictions['Predicted_Consumption'].mean()
            change_pct = (avg_predicted - avg_historical) / avg_historical * 100
            
            col1.metric(
                "Average Historical Usage",
                f"{avg_historical:.2f} kWh"
            )
            col2.metric(
                "Average Predicted Usage",
                f"{avg_predicted:.2f} kWh"
            )
            col3.metric(
                "Expected Change",
                f"{change_pct:+.1f}%",
                delta_color="inverse"
            )

    # Additional insights section
    st.subheader("Energy Saving Opportunities")
    
    # Calculate potential savings based on patterns
    def calculate_savings_opportunities(historical_data, predictions_data):
        opportunities = []
        
        # Check for peak hour reduction potential
        peak_hours = historical_data.groupby('Hour')['Consumption'].mean()
        top_peak_hours = peak_hours.nlargest(3)
        potential_peak_savings = top_peak_hours.sum() * 0.2  # Assume 20% reduction possible
        
        opportunities.append({
            'Type': 'Peak Hour Reduction',
            'Description': f'Reduce usage during peak hours ({", ".join(map(str, top_peak_hours.index))}:00)',
            'Potential_Savings': f'{potential_peak_savings:.2f} kWh per day'
        })
        
        # Check for weekend optimization
        weekend_data = historical_data[historical_data['Weekend']]
        weekday_data = historical_data[~historical_data['Weekend']]
        if weekend_data['Consumption'].mean() > weekday_data['Consumption'].mean():
            weekend_savings = (weekend_data['Consumption'].mean() - weekday_data['Consumption'].mean()) * 2
            opportunities.append({
                'Type': 'Weekend Optimization',
                'Description': 'Optimize weekend consumption patterns',
                'Potential_Savings': f'{weekend_savings:.2f} kWh per weekend'
            })
        
        # Seasonal optimization
        seasonal_data = historical_data.copy()
        seasonal_data['Month'] = seasonal_data['Date'].dt.month
        monthly_avg = seasonal_data.groupby('Month')['Consumption'].mean()
        seasonal_variation = monthly_avg.max() - monthly_avg.min()
        
        if seasonal_variation > monthly_avg.mean() * 0.3:  # If variation is more than 30%
            opportunities.append({
                'Type': 'Seasonal Optimization',
                'Description': 'Implement seasonal usage strategies',
                'Potential_Savings': f'{seasonal_variation:.2f} kWh per month'
            })
        
        return pd.DataFrame(opportunities)

    savings_opportunities = calculate_savings_opportunities(data, predictions)
    
    for _, opportunity in savings_opportunities.iterrows():
        with st.expander(f"💡 {opportunity['Type']}"):
            st.write(f"**Description:** {opportunity['Description']}")
            st.write(f"**Potential Savings:** {opportunity['Potential_Savings']}")
            
            # Add specific recommendations based on opportunity type
            if opportunity['Type'] == 'Peak Hour Reduction':
                st.write("""
                **Recommendations:**
                - Schedule high-energy activities during off-peak hours
                - Use automated controls to limit non-essential usage during peak times
                - Consider energy storage solutions for peak shifting
                """)
            elif opportunity['Type'] == 'Weekend Optimization':
                st.write("""
                **Recommendations:**
                - Review weekend device scheduling
                - Implement automatic shutdown for unused equipment
                - Optimize temperature settings for unoccupied periods
                """)
            elif opportunity['Type'] == 'Seasonal Optimization':
                st.write("""
                **Recommendations:**
                - Adjust HVAC settings seasonally
                - Implement weather-based control strategies
                - Schedule maintenance during shoulder seasons
                """)

# Add export functionality
if st.sidebar.button("Export Analysis Report"):
    # Create report dataframe
    report_data = {
        'Metric': [
            'Total Consumption',
            'Average Daily Usage',
            'Peak Usage Hour',
            'Number of Anomalies',
            'Forecast Trend'
        ],
        'Value': [
            f"{total_consumption:.1f} kWh",
            f"{avg_daily:.1f} kWh",
            f"{peak_hour}:00",
            len(anomalies),
            f"{change_pct:+.1f}% (30-day forecast)"
        ]
    }
    report_df = pd.DataFrame(report_data)
    
    # Convert to CSV
    csv = report_df.to_csv(index=False)
    st.sidebar.download_button(
        label="Download Report",
        data=csv,
        file_name="energy_analysis_report.csv",
        mime="text/csv"
    )

# Add help section in sidebar
with st.sidebar.expander("ℹ️ Help"):
    st.write("""
    **Using the Dashboard:**
    1. Select your user type (Home/Organization)
    2. Adjust the analysis period using the slider
    3. Navigate through tabs to view different analyses
    4. Use expanders to see detailed information
    5. Export your analysis report using the button above
    
    For additional support, contact our team at [email protected]
    """)

# Add system status
st.sidebar.markdown("---")
st.sidebar.markdown("### System Status")
st.sidebar.markdown("✅ All Systems Operational")
st.sidebar.markdown(f"Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")