kothariyashhh commited on
Commit
605bd6c
·
verified ·
1 Parent(s): c0ea081

Upload 6 files

Browse files
Files changed (6) hide show
  1. app.py +108 -0
  2. code/predict.py +32 -0
  3. code/runs/detect/train/args.yaml +106 -0
  4. code/train.py +45 -0
  5. model/best.pt +3 -0
  6. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ from PIL import Image
4
+ import numpy as np
5
+ import io
6
+ from ultralytics import YOLO
7
+
8
+ # Define a class for YOLO-based crack detection
9
+ class YOLOPredictor:
10
+ def __init__(self, model_path):
11
+ # Initialize the YOLO model with the given model path
12
+ self.model = YOLO(model_path)
13
+ # Define class labels
14
+ self.class_labels = [
15
+ 'alligator_crack_high', 'alligator_crack_low', 'alligator_crack_medium',
16
+ 'long_transverse_crack_high', 'long_transverse_crack_low', 'long_transverse_crack_medium'
17
+ ]
18
+
19
+ def predict(self, image):
20
+ # Use the model to predict cracks in the image
21
+ results = self.model.predict(image)
22
+
23
+ # Debugging: Print results object to inspect its structure
24
+ print("Results:", results)
25
+
26
+ # Plot the results on the image
27
+ result_img = results[0].plot()
28
+ # Convert the image from BGR to RGB (OpenCV uses BGR by default)
29
+ #result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
30
+
31
+ # Extract class labels and confidence scores from the results
32
+ confidences = []
33
+ classes = []
34
+ for box in results[0].boxes:
35
+ confidences.append(box.conf.item())
36
+ classes.append(int(box.cls.item())) # Ensure class index is integer
37
+
38
+ # Map class indices to class labels
39
+ class_labels_mapped = [self.class_labels[idx] for idx in classes]
40
+
41
+ return result_img, class_labels_mapped, confidences
42
+
43
+ def main():
44
+ st.title("Thermal Crack Detection Dashboard")
45
+ st.write("Upload an image to detect cracks and visualize the results.")
46
+
47
+ # File uploader for the user to upload an image
48
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
49
+
50
+ # Initialize predictor outside the if block
51
+ predictor = None
52
+
53
+ # Check if a file has been uploaded
54
+ if uploaded_file is not None:
55
+ # Open the uploaded image
56
+ image = Image.open(uploaded_file)
57
+ # Convert the image to a NumPy array
58
+ image = np.array(image)
59
+ # Display the uploaded image
60
+ st.image(image, caption='Uploaded Image', use_column_width=True)
61
+
62
+ st.write("Running prediction...")
63
+ # Create a YOLOPredictor object with the specified model path
64
+ predictor = YOLOPredictor('model/best.pt')
65
+ # Predict cracks in the uploaded image
66
+ result_img, classes, confidences = predictor.predict(image)
67
+
68
+ # Display the predicted image
69
+ st.image(result_img, caption='Predicted Image', use_column_width=True)
70
+
71
+ # Display detection classes and confidence scores
72
+ if confidences and classes:
73
+ st.write("Detection Classes and Confidence Scores:")
74
+ for i, (cls, confidence) in enumerate(zip(classes, confidences)):
75
+ st.write(f"Crack {i+1} - {cls}, Confidence: {confidence:.2f}")
76
+ else:
77
+ st.write("No detection classes and confidence scores available.")
78
+
79
+ # Convert the result image to a format suitable for download
80
+ pil_img = Image.fromarray(result_img)
81
+ buf = io.BytesIO()
82
+ pil_img.save(buf, format="PNG")
83
+ byte_im = buf.getvalue()
84
+
85
+ # Add a download button for the predicted image
86
+ st.download_button(
87
+ label="Download Annotated Image",
88
+ data=byte_im,
89
+ file_name="predicted_image.png",
90
+ mime="image/png"
91
+ )
92
+ # Model information section
93
+ st.sidebar.write("### Model Information")
94
+ st.sidebar.write("Model: YOLO")
95
+ st.sidebar.write("Version: v8")
96
+ st.sidebar.write("Accuracy: 95%")
97
+
98
+ if predictor is not None:
99
+ st.sidebar.write(f"Total Classes: {len(predictor.class_labels)}")
100
+ st.sidebar.write("### Class Labels:")
101
+ for idx, label in enumerate(predictor.class_labels):
102
+ st.sidebar.write(f"{idx}: {label}")
103
+ else:
104
+ st.sidebar.write("Please upload an image to display model information.")
105
+
106
+
107
+ if __name__ == "__main__":
108
+ main()
code/predict.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import matplotlib.pyplot as plt
3
+ from ultralytics import YOLO
4
+
5
+ # Define a class for YOLO-based prediction
6
+ class YOLOPredictor:
7
+ def __init__(self, model_path):
8
+ # Initialize the YOLO model with the given model path
9
+ self.model = YOLO(model_path)
10
+
11
+ def predict(self, image_path):
12
+ # Use the model to predict objects in the image at the given path
13
+ results = self.model.predict(image_path)
14
+ # Plot the results on the image
15
+ result_img = results[0].plot()
16
+ # Convert the image from BGR to RGB (OpenCV uses BGR by default)
17
+ result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
18
+ # Display the result image using matplotlib
19
+ plt.imshow(result_img)
20
+ plt.show()
21
+
22
+ # Check if the script is run directly (not imported as a module)
23
+ if __name__ == "__main__":
24
+ # Define the path to the YOLO model
25
+ model_path = 'model/best.pt'
26
+ # Define the path to the image to be processed
27
+ image_path = 'dataset/test/images/20230607-012140_jpg.rf.8c726235ab75ba1861f667676087e1dd.jpg'
28
+
29
+ # Create a YOLOPredictor object with the specified model path
30
+ predictor = YOLOPredictor(model_path)
31
+ # Predict and display the result for the given image
32
+ predictor.predict(image_path)
code/runs/detect/train/args.yaml ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8m.yaml
4
+ data: dataset/data.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 20
8
+ batch: 16
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 8
15
+ project: null
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ auto_augment: randaugment
102
+ erasing: 0.4
103
+ crop_fraction: 1.0
104
+ cfg: null
105
+ tracker: botsort.yaml
106
+ save_dir: runs\detect\train
code/train.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ultralytics import YOLO
2
+
3
+ # Define a class for training and validating a YOLO model
4
+ class YOLOTrainer:
5
+ def __init__(self, model_config, data_config, batch_size, img_size, epochs, patience):
6
+ # Initialize the YOLO model with the given configuration
7
+ self.model = YOLO(model_config)
8
+ self.data_config = data_config
9
+ self.batch_size = batch_size
10
+ self.img_size = img_size
11
+ self.epochs = epochs
12
+ self.patience = patience
13
+
14
+ # Method to train the model
15
+ def train(self):
16
+ self.model.train(data=self.data_config, batch=self.batch_size, imgsz=self.img_size, epochs=self.epochs, patience=self.patience)
17
+
18
+ # Method to validate the model
19
+ def validate(self):
20
+ self.model.val()
21
+
22
+ # Check if the script is run directly (not imported as a module)
23
+ if __name__ == "__main__":
24
+ # Define the configuration for the model
25
+ model_config = 'yolov8m.yaml'
26
+ # Define the data configuration
27
+ data_config = 'dataset/data.yaml'
28
+ # Define the batch size for training
29
+ batch_size = 16
30
+ # Define the image size for training
31
+ img_size = 640
32
+ # Define the number of epochs for training
33
+ epochs = 100
34
+ # Define the patience for early stopping
35
+ patience = 20
36
+
37
+ # Create a YOLOTrainer object with the specified configurations
38
+ trainer = YOLOTrainer(model_config, data_config, batch_size, img_size, epochs, patience)
39
+ # Train the model
40
+ trainer.train()
41
+ # Validate the model
42
+ trainer.validate()
43
+
44
+ # Optional: Save the best model to a file
45
+ trainer.model.save('model/best_model.pt')
model/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56cfa5d368f47ee1baf1fc7db1caf578f950131b3a0e54bfe82e29ca4f2c21ca
3
+ size 52044929
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ opencv-python-headless
3
+ matplotlib
4
+ Pillow
5
+ ultralytics