Upload 6 files
Browse files- app.py +108 -0
- code/predict.py +32 -0
- code/runs/detect/train/args.yaml +106 -0
- code/train.py +45 -0
- model/best.pt +3 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import io
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
# Define a class for YOLO-based crack detection
|
9 |
+
class YOLOPredictor:
|
10 |
+
def __init__(self, model_path):
|
11 |
+
# Initialize the YOLO model with the given model path
|
12 |
+
self.model = YOLO(model_path)
|
13 |
+
# Define class labels
|
14 |
+
self.class_labels = [
|
15 |
+
'alligator_crack_high', 'alligator_crack_low', 'alligator_crack_medium',
|
16 |
+
'long_transverse_crack_high', 'long_transverse_crack_low', 'long_transverse_crack_medium'
|
17 |
+
]
|
18 |
+
|
19 |
+
def predict(self, image):
|
20 |
+
# Use the model to predict cracks in the image
|
21 |
+
results = self.model.predict(image)
|
22 |
+
|
23 |
+
# Debugging: Print results object to inspect its structure
|
24 |
+
print("Results:", results)
|
25 |
+
|
26 |
+
# Plot the results on the image
|
27 |
+
result_img = results[0].plot()
|
28 |
+
# Convert the image from BGR to RGB (OpenCV uses BGR by default)
|
29 |
+
#result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
|
30 |
+
|
31 |
+
# Extract class labels and confidence scores from the results
|
32 |
+
confidences = []
|
33 |
+
classes = []
|
34 |
+
for box in results[0].boxes:
|
35 |
+
confidences.append(box.conf.item())
|
36 |
+
classes.append(int(box.cls.item())) # Ensure class index is integer
|
37 |
+
|
38 |
+
# Map class indices to class labels
|
39 |
+
class_labels_mapped = [self.class_labels[idx] for idx in classes]
|
40 |
+
|
41 |
+
return result_img, class_labels_mapped, confidences
|
42 |
+
|
43 |
+
def main():
|
44 |
+
st.title("Thermal Crack Detection Dashboard")
|
45 |
+
st.write("Upload an image to detect cracks and visualize the results.")
|
46 |
+
|
47 |
+
# File uploader for the user to upload an image
|
48 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
49 |
+
|
50 |
+
# Initialize predictor outside the if block
|
51 |
+
predictor = None
|
52 |
+
|
53 |
+
# Check if a file has been uploaded
|
54 |
+
if uploaded_file is not None:
|
55 |
+
# Open the uploaded image
|
56 |
+
image = Image.open(uploaded_file)
|
57 |
+
# Convert the image to a NumPy array
|
58 |
+
image = np.array(image)
|
59 |
+
# Display the uploaded image
|
60 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
61 |
+
|
62 |
+
st.write("Running prediction...")
|
63 |
+
# Create a YOLOPredictor object with the specified model path
|
64 |
+
predictor = YOLOPredictor('model/best.pt')
|
65 |
+
# Predict cracks in the uploaded image
|
66 |
+
result_img, classes, confidences = predictor.predict(image)
|
67 |
+
|
68 |
+
# Display the predicted image
|
69 |
+
st.image(result_img, caption='Predicted Image', use_column_width=True)
|
70 |
+
|
71 |
+
# Display detection classes and confidence scores
|
72 |
+
if confidences and classes:
|
73 |
+
st.write("Detection Classes and Confidence Scores:")
|
74 |
+
for i, (cls, confidence) in enumerate(zip(classes, confidences)):
|
75 |
+
st.write(f"Crack {i+1} - {cls}, Confidence: {confidence:.2f}")
|
76 |
+
else:
|
77 |
+
st.write("No detection classes and confidence scores available.")
|
78 |
+
|
79 |
+
# Convert the result image to a format suitable for download
|
80 |
+
pil_img = Image.fromarray(result_img)
|
81 |
+
buf = io.BytesIO()
|
82 |
+
pil_img.save(buf, format="PNG")
|
83 |
+
byte_im = buf.getvalue()
|
84 |
+
|
85 |
+
# Add a download button for the predicted image
|
86 |
+
st.download_button(
|
87 |
+
label="Download Annotated Image",
|
88 |
+
data=byte_im,
|
89 |
+
file_name="predicted_image.png",
|
90 |
+
mime="image/png"
|
91 |
+
)
|
92 |
+
# Model information section
|
93 |
+
st.sidebar.write("### Model Information")
|
94 |
+
st.sidebar.write("Model: YOLO")
|
95 |
+
st.sidebar.write("Version: v8")
|
96 |
+
st.sidebar.write("Accuracy: 95%")
|
97 |
+
|
98 |
+
if predictor is not None:
|
99 |
+
st.sidebar.write(f"Total Classes: {len(predictor.class_labels)}")
|
100 |
+
st.sidebar.write("### Class Labels:")
|
101 |
+
for idx, label in enumerate(predictor.class_labels):
|
102 |
+
st.sidebar.write(f"{idx}: {label}")
|
103 |
+
else:
|
104 |
+
st.sidebar.write("Please upload an image to display model information.")
|
105 |
+
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|
code/predict.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
# Define a class for YOLO-based prediction
|
6 |
+
class YOLOPredictor:
|
7 |
+
def __init__(self, model_path):
|
8 |
+
# Initialize the YOLO model with the given model path
|
9 |
+
self.model = YOLO(model_path)
|
10 |
+
|
11 |
+
def predict(self, image_path):
|
12 |
+
# Use the model to predict objects in the image at the given path
|
13 |
+
results = self.model.predict(image_path)
|
14 |
+
# Plot the results on the image
|
15 |
+
result_img = results[0].plot()
|
16 |
+
# Convert the image from BGR to RGB (OpenCV uses BGR by default)
|
17 |
+
result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
|
18 |
+
# Display the result image using matplotlib
|
19 |
+
plt.imshow(result_img)
|
20 |
+
plt.show()
|
21 |
+
|
22 |
+
# Check if the script is run directly (not imported as a module)
|
23 |
+
if __name__ == "__main__":
|
24 |
+
# Define the path to the YOLO model
|
25 |
+
model_path = 'model/best.pt'
|
26 |
+
# Define the path to the image to be processed
|
27 |
+
image_path = 'dataset/test/images/20230607-012140_jpg.rf.8c726235ab75ba1861f667676087e1dd.jpg'
|
28 |
+
|
29 |
+
# Create a YOLOPredictor object with the specified model path
|
30 |
+
predictor = YOLOPredictor(model_path)
|
31 |
+
# Predict and display the result for the given image
|
32 |
+
predictor.predict(image_path)
|
code/runs/detect/train/args.yaml
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: detect
|
2 |
+
mode: train
|
3 |
+
model: yolov8m.yaml
|
4 |
+
data: dataset/data.yaml
|
5 |
+
epochs: 100
|
6 |
+
time: null
|
7 |
+
patience: 20
|
8 |
+
batch: 16
|
9 |
+
imgsz: 640
|
10 |
+
save: true
|
11 |
+
save_period: -1
|
12 |
+
cache: false
|
13 |
+
device: null
|
14 |
+
workers: 8
|
15 |
+
project: null
|
16 |
+
name: train
|
17 |
+
exist_ok: false
|
18 |
+
pretrained: true
|
19 |
+
optimizer: auto
|
20 |
+
verbose: true
|
21 |
+
seed: 0
|
22 |
+
deterministic: true
|
23 |
+
single_cls: false
|
24 |
+
rect: false
|
25 |
+
cos_lr: false
|
26 |
+
close_mosaic: 10
|
27 |
+
resume: false
|
28 |
+
amp: true
|
29 |
+
fraction: 1.0
|
30 |
+
profile: false
|
31 |
+
freeze: null
|
32 |
+
multi_scale: false
|
33 |
+
overlap_mask: true
|
34 |
+
mask_ratio: 4
|
35 |
+
dropout: 0.0
|
36 |
+
val: true
|
37 |
+
split: val
|
38 |
+
save_json: false
|
39 |
+
save_hybrid: false
|
40 |
+
conf: null
|
41 |
+
iou: 0.7
|
42 |
+
max_det: 300
|
43 |
+
half: false
|
44 |
+
dnn: false
|
45 |
+
plots: true
|
46 |
+
source: null
|
47 |
+
vid_stride: 1
|
48 |
+
stream_buffer: false
|
49 |
+
visualize: false
|
50 |
+
augment: false
|
51 |
+
agnostic_nms: false
|
52 |
+
classes: null
|
53 |
+
retina_masks: false
|
54 |
+
embed: null
|
55 |
+
show: false
|
56 |
+
save_frames: false
|
57 |
+
save_txt: false
|
58 |
+
save_conf: false
|
59 |
+
save_crop: false
|
60 |
+
show_labels: true
|
61 |
+
show_conf: true
|
62 |
+
show_boxes: true
|
63 |
+
line_width: null
|
64 |
+
format: torchscript
|
65 |
+
keras: false
|
66 |
+
optimize: false
|
67 |
+
int8: false
|
68 |
+
dynamic: false
|
69 |
+
simplify: false
|
70 |
+
opset: null
|
71 |
+
workspace: 4
|
72 |
+
nms: false
|
73 |
+
lr0: 0.01
|
74 |
+
lrf: 0.01
|
75 |
+
momentum: 0.937
|
76 |
+
weight_decay: 0.0005
|
77 |
+
warmup_epochs: 3.0
|
78 |
+
warmup_momentum: 0.8
|
79 |
+
warmup_bias_lr: 0.1
|
80 |
+
box: 7.5
|
81 |
+
cls: 0.5
|
82 |
+
dfl: 1.5
|
83 |
+
pose: 12.0
|
84 |
+
kobj: 1.0
|
85 |
+
label_smoothing: 0.0
|
86 |
+
nbs: 64
|
87 |
+
hsv_h: 0.015
|
88 |
+
hsv_s: 0.7
|
89 |
+
hsv_v: 0.4
|
90 |
+
degrees: 0.0
|
91 |
+
translate: 0.1
|
92 |
+
scale: 0.5
|
93 |
+
shear: 0.0
|
94 |
+
perspective: 0.0
|
95 |
+
flipud: 0.0
|
96 |
+
fliplr: 0.5
|
97 |
+
bgr: 0.0
|
98 |
+
mosaic: 1.0
|
99 |
+
mixup: 0.0
|
100 |
+
copy_paste: 0.0
|
101 |
+
auto_augment: randaugment
|
102 |
+
erasing: 0.4
|
103 |
+
crop_fraction: 1.0
|
104 |
+
cfg: null
|
105 |
+
tracker: botsort.yaml
|
106 |
+
save_dir: runs\detect\train
|
code/train.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
|
3 |
+
# Define a class for training and validating a YOLO model
|
4 |
+
class YOLOTrainer:
|
5 |
+
def __init__(self, model_config, data_config, batch_size, img_size, epochs, patience):
|
6 |
+
# Initialize the YOLO model with the given configuration
|
7 |
+
self.model = YOLO(model_config)
|
8 |
+
self.data_config = data_config
|
9 |
+
self.batch_size = batch_size
|
10 |
+
self.img_size = img_size
|
11 |
+
self.epochs = epochs
|
12 |
+
self.patience = patience
|
13 |
+
|
14 |
+
# Method to train the model
|
15 |
+
def train(self):
|
16 |
+
self.model.train(data=self.data_config, batch=self.batch_size, imgsz=self.img_size, epochs=self.epochs, patience=self.patience)
|
17 |
+
|
18 |
+
# Method to validate the model
|
19 |
+
def validate(self):
|
20 |
+
self.model.val()
|
21 |
+
|
22 |
+
# Check if the script is run directly (not imported as a module)
|
23 |
+
if __name__ == "__main__":
|
24 |
+
# Define the configuration for the model
|
25 |
+
model_config = 'yolov8m.yaml'
|
26 |
+
# Define the data configuration
|
27 |
+
data_config = 'dataset/data.yaml'
|
28 |
+
# Define the batch size for training
|
29 |
+
batch_size = 16
|
30 |
+
# Define the image size for training
|
31 |
+
img_size = 640
|
32 |
+
# Define the number of epochs for training
|
33 |
+
epochs = 100
|
34 |
+
# Define the patience for early stopping
|
35 |
+
patience = 20
|
36 |
+
|
37 |
+
# Create a YOLOTrainer object with the specified configurations
|
38 |
+
trainer = YOLOTrainer(model_config, data_config, batch_size, img_size, epochs, patience)
|
39 |
+
# Train the model
|
40 |
+
trainer.train()
|
41 |
+
# Validate the model
|
42 |
+
trainer.validate()
|
43 |
+
|
44 |
+
# Optional: Save the best model to a file
|
45 |
+
trainer.model.save('model/best_model.pt')
|
model/best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56cfa5d368f47ee1baf1fc7db1caf578f950131b3a0e54bfe82e29ca4f2c21ca
|
3 |
+
size 52044929
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
opencv-python-headless
|
3 |
+
matplotlib
|
4 |
+
Pillow
|
5 |
+
ultralytics
|