import streamlit as st import cv2 from PIL import Image import numpy as np import io from ultralytics import YOLO # Define a class for YOLO-based crack detection class YOLOPredictor: def __init__(self, model_path): # Initialize the YOLO model with the given model path self.model = YOLO(model_path) # Define class labels self.class_labels = [ 'alligator_crack_high', 'alligator_crack_low', 'alligator_crack_medium', 'long_transverse_crack_high', 'long_transverse_crack_low', 'long_transverse_crack_medium' ] def predict(self, image): # Use the model to predict cracks in the image results = self.model.predict(image) # Debugging: Print results object to inspect its structure print("Results:", results) # Plot the results on the image result_img = results[0].plot() # Convert the image from BGR to RGB (OpenCV uses BGR by default) #result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB) # Extract class labels and confidence scores from the results confidences = [] classes = [] for box in results[0].boxes: confidences.append(box.conf.item()) classes.append(int(box.cls.item())) # Ensure class index is integer # Map class indices to class labels class_labels_mapped = [self.class_labels[idx] for idx in classes] return result_img, class_labels_mapped, confidences def main(): st.title("Thermal Crack Detection Dashboard") st.write("Upload an image to detect cracks and visualize the results.") # File uploader for the user to upload an image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Initialize predictor outside the if block predictor = None # Check if a file has been uploaded if uploaded_file is not None: # Open the uploaded image image = Image.open(uploaded_file) # Convert the image to a NumPy array image = np.array(image) # Display the uploaded image st.image(image, caption='Uploaded Image', use_column_width=True) st.write("Running prediction...") # Create a YOLOPredictor object with the specified model path predictor = YOLOPredictor('model/best.pt') # Predict cracks in the uploaded image result_img, classes, confidences = predictor.predict(image) # Display the predicted image st.image(result_img, caption='Predicted Image', use_column_width=True) # Display detection classes and confidence scores if confidences and classes: st.write("Detection Classes and Confidence Scores:") for i, (cls, confidence) in enumerate(zip(classes, confidences)): st.write(f"Crack {i+1} - {cls}, Confidence: {confidence:.2f}") else: st.write("No detection classes and confidence scores available.") # Convert the result image to a format suitable for download pil_img = Image.fromarray(result_img) buf = io.BytesIO() pil_img.save(buf, format="PNG") byte_im = buf.getvalue() # Add a download button for the predicted image st.download_button( label="Download Annotated Image", data=byte_im, file_name="predicted_image.png", mime="image/png" ) # Model information section st.sidebar.write("### Model Information") st.sidebar.write("Model: YOLO") st.sidebar.write("Version: v8") st.sidebar.write("Accuracy: 95%") if predictor is not None: st.sidebar.write(f"Total Classes: {len(predictor.class_labels)}") st.sidebar.write("### Class Labels:") for idx, label in enumerate(predictor.class_labels): st.sidebar.write(f"{idx}: {label}") else: st.sidebar.write("Please upload an image to display model information.") if __name__ == "__main__": main()