Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +177 -0
- demo.pdf +0 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
# from pypdf import PdfReader, PdfWriter
|
5 |
+
# from pdf2image import convert_from_path
|
6 |
+
from langchain_community.document_loaders import PyPDFLoader
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain.chains.llm import LLMChain
|
10 |
+
import tempfile
|
11 |
+
import markdown2
|
12 |
+
from weasyprint import HTML
|
13 |
+
from io import BytesIO
|
14 |
+
|
15 |
+
def format_string(input_string):
|
16 |
+
# Find the index of the first occurrence of ":"
|
17 |
+
index = input_string.find(":")
|
18 |
+
|
19 |
+
# Check if ":" is found
|
20 |
+
if index != -1:
|
21 |
+
# Extract the substring starting from the found index to the end
|
22 |
+
substring = input_string[(index+1):]
|
23 |
+
else:
|
24 |
+
# If ":" is not found, return an empty string or an appropriate message
|
25 |
+
substring = input_string
|
26 |
+
return substring
|
27 |
+
def save_uploaded_file(uploadedfile):
|
28 |
+
# Create a temporary directory to save the file
|
29 |
+
temp_dir = tempfile.gettempdir()
|
30 |
+
save_path = os.path.join(temp_dir, uploadedfile.name)
|
31 |
+
|
32 |
+
with open(save_path, "wb") as f:
|
33 |
+
f.write(uploadedfile.getbuffer())
|
34 |
+
|
35 |
+
return save_path
|
36 |
+
|
37 |
+
def read_pdf(file_path):
|
38 |
+
# Dummy processing: copying the original PDF content to a new PDF
|
39 |
+
loader = PyPDFLoader(file_path)
|
40 |
+
pages = loader.load_and_split()
|
41 |
+
text = ""
|
42 |
+
for page in pages:
|
43 |
+
print(page.page_content)
|
44 |
+
text = text + " "+page.page_content+ "\n\n"
|
45 |
+
return text
|
46 |
+
def generate_pdf_from_markup(markup_text):
|
47 |
+
# Convert Markdown to HTML
|
48 |
+
html_content = markdown2.markdown(markup_text)
|
49 |
+
|
50 |
+
# Create a temporary file to save the PDF
|
51 |
+
temp_dir = tempfile.gettempdir()
|
52 |
+
pdf_path = os.path.join(temp_dir, "generated.pdf")
|
53 |
+
|
54 |
+
# Convert HTML to PDF
|
55 |
+
HTML(string=html_content).write_pdf(pdf_path)
|
56 |
+
|
57 |
+
return pdf_path
|
58 |
+
|
59 |
+
def parse_resume(data):
|
60 |
+
llm = ChatGroq(api_key=os.getenv("GROQ_API_KEY"),model="llama3-70b-8192")
|
61 |
+
system_prompt = """
|
62 |
+
You are an AI assistant designed to remove and format resume data. When provided with extracted text from a PDF resume, your task is to remove personal information and certain details while maintaining the professional content and structure.
|
63 |
+
Follow the guidelines below:
|
64 |
+
Keep projects, experience, technical skills as it is without any change.
|
65 |
+
Remove Salutations: Mr, Mrs, Ms, etc.
|
66 |
+
Remove Names: All instances of the candidate's names.
|
67 |
+
Remove Gender: Any mention of gender.
|
68 |
+
Remove Age/D.O.B./Astrology Info: Any references to age, date of birth, or astrological signs.
|
69 |
+
Remove Links of personal accounts for example: exail id, github url, linkedin url and all the other urls except the project and experience urls.
|
70 |
+
Remove email address, mobile number, or any other information that has personal identity.
|
71 |
+
Anonymize Location: Replace specific locations with more general terms (e.g., "Willing to relocate, currently based in Leicester").
|
72 |
+
Anonymize Education Institutions: Replace the names of educational institutions/schools with "top university (e.g. highly reputable university on the global stage) or top school" if applicable.
|
73 |
+
Anonymize Language Skills: Replace specific languages with regional groupings for multilingual candidates (e.g., "proficient in multiple European languages").
|
74 |
+
Remove Hobbies and INTERESTS: Remove specific details related to hobbies and interests
|
75 |
+
Anonymize Other Fields: Make specific removals as needed to protect the candidate's identity.
|
76 |
+
Remove professional summary, objective, agenda and all these type of sections.
|
77 |
+
Add only professional achievment, awards and certifactes
|
78 |
+
Ensure the remaining sections and information are formatted properly to maintain the professional appearance of the resume.
|
79 |
+
Ensure proper formatting of the resume with proper content justifications, add markdown, add bullet points and spacing wherever required.
|
80 |
+
Return the output of resume content only. Don't include any notes or comments.
|
81 |
+
"""
|
82 |
+
# Remove achievment, awards and certifactes that are not related to professional work.
|
83 |
+
|
84 |
+
user_prompt_template = """
|
85 |
+
{resume_text}
|
86 |
+
"""
|
87 |
+
prompt_template = PromptTemplate(
|
88 |
+
input_variables=["resume_text"],
|
89 |
+
template=system_prompt + user_prompt_template
|
90 |
+
)
|
91 |
+
anonymize_chain = LLMChain(
|
92 |
+
llm=llm,
|
93 |
+
prompt=prompt_template
|
94 |
+
)
|
95 |
+
response=anonymize_chain.invoke(data)
|
96 |
+
return response
|
97 |
+
|
98 |
+
def handle_pdf(file_path):
|
99 |
+
with st.spinner("Parsing Resume..."):
|
100 |
+
data = read_pdf(file_path)
|
101 |
+
modified_data = parse_resume(data)
|
102 |
+
formatted_data = format_string(modified_data["text"])
|
103 |
+
st.write(formatted_data)
|
104 |
+
|
105 |
+
pdf_path = ""
|
106 |
+
|
107 |
+
if st.button("Generate PDF"):
|
108 |
+
# Add spinner while generating the PDF
|
109 |
+
with st.spinner("Generating PDF..."):
|
110 |
+
# Generate the PDF from markup text
|
111 |
+
pdf_path = generate_pdf_from_markup(formatted_data)
|
112 |
+
|
113 |
+
st.success("PDF generated successfully.")
|
114 |
+
|
115 |
+
# Show the preview of the first page of the PDF
|
116 |
+
with open(pdf_path, "rb") as f:
|
117 |
+
pdf_bytes = f.read()
|
118 |
+
st.download_button(
|
119 |
+
label="Download PDF",
|
120 |
+
data=pdf_bytes,
|
121 |
+
file_name="generated.pdf",
|
122 |
+
mime="application/pdf"
|
123 |
+
)
|
124 |
+
|
125 |
+
def main():
|
126 |
+
st.title("Resume Parser")
|
127 |
+
option = st.radio(
|
128 |
+
"Choose an option:",
|
129 |
+
("Use Demo PDF", "Browse Files"),
|
130 |
+
)
|
131 |
+
|
132 |
+
if option == "Use Demo PDF":
|
133 |
+
demo_pdf_path = "demo.pdf"
|
134 |
+
st.info("You have selected the demo PDF.")
|
135 |
+
if st.button("Click to go with Demo pdf"):
|
136 |
+
handle_pdf(demo_pdf_path)
|
137 |
+
|
138 |
+
|
139 |
+
elif option == "Browse Files":
|
140 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
141 |
+
|
142 |
+
if uploaded_file is not None:
|
143 |
+
original_file_path = save_uploaded_file(uploaded_file)
|
144 |
+
|
145 |
+
st.success(f"File saved at {original_file_path}")
|
146 |
+
|
147 |
+
handle_pdf(original_file_path)
|
148 |
+
|
149 |
+
|
150 |
+
# with st.spinner("Parsing Resume..."):
|
151 |
+
# data = read_pdf(original_file_path)
|
152 |
+
# modified_data = parse_resume(data)
|
153 |
+
# formatted_data = format_string(modified_data["text"])
|
154 |
+
# st.write(formatted_data)
|
155 |
+
# pdf_path = ""
|
156 |
+
|
157 |
+
# if st.button("Generate PDF"):
|
158 |
+
# # Add spinner while generating the PDF
|
159 |
+
# with st.spinner("Generating PDF..."):
|
160 |
+
# # Generate the PDF from markup text
|
161 |
+
# pdf_path = generate_pdf_from_markup(formatted_data)
|
162 |
+
|
163 |
+
# st.success("PDF generated successfully.")
|
164 |
+
|
165 |
+
# # Show the preview of the first page of the PDF
|
166 |
+
# with open(pdf_path, "rb") as f:
|
167 |
+
# pdf_bytes = f.read()
|
168 |
+
# st.download_button(
|
169 |
+
# label="Download PDF",
|
170 |
+
# data=pdf_bytes,
|
171 |
+
# file_name="generated.pdf",
|
172 |
+
# mime="application/pdf"
|
173 |
+
# )
|
174 |
+
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
main()
|
demo.pdf
ADDED
Binary file (86.8 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pypdf
|
2 |
+
streamlit
|
3 |
+
langchain
|
4 |
+
langchain_groq
|
5 |
+
langchain_community
|
6 |
+
markdown2
|
7 |
+
weasyprint
|