Spaces:
Sleeping
Sleeping
File size: 5,491 Bytes
5a2b2d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import uuid
from pathlib import Path
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
current_dir = Path(__file__).resolve().parent
class DataIndexer:
source_file = os.path.join(current_dir, 'sources.txt')
def __init__(self, index_name='langchain-repo') -> None:
# TODO: choose your embedding model
# self.embedding_client = InferenceClient(
# "dunzhang/stella_en_1.5B_v5",
# token=os.environ['HF_TOKEN'],
# )
self.embedding_client = OpenAIEmbeddings()
self.index_name = index_name
self.pinecone_client = Pinecone(api_key=os.environ.get('PINECONE_API_KEY'))
if index_name not in self.pinecone_client.list_indexes().names():
# TODO: create your index if it doesn't exist. Use the create_index function.
# Make sure to choose the dimension that corresponds to your embedding model
pass
self.index = self.pinecone_client.Index(self.index_name)
# TODO: make sure to build the index.
self.source_index = None
def get_source_index(self):
if not os.path.isfile(self.source_file):
print('No source file')
return None
print('create source index')
with open(self.source_file, 'r') as file:
sources = file.readlines()
sources = [s.rstrip('\n') for s in sources]
vectorstore = Chroma.from_texts(
sources, embedding=self.embedding_client
)
return vectorstore
def index_data(self, docs, batch_size=32):
with open(self.source_file, 'a') as file:
for doc in docs:
file.writelines(doc.metadata['source'] + '\n')
for i in range(0, len(docs), batch_size):
batch = docs[i: i + batch_size]
# TODO: create a list of the vector representations of each text data in the batch
# TODO: choose your embedding model
# values = self.embedding_client.embed_documents([
# doc.page_content for doc in batch
# ])
# values = self.embedding_client.feature_extraction([
# doc.page_content for doc in batch
# ])
values = None
# TODO: create a list of unique identifiers for each element in the batch with the uuid package.
vector_ids = None
# TODO: create a list of dictionaries representing the metadata. Capture the text data
# with the "text" key, and make sure to capture the rest of the doc.metadata.
metadatas = None
# create a list of dictionaries with keys "id" (the unique identifiers), "values"
# (the vector representation), and "metadata" (the metadata).
vectors = [{
'id': vector_id,
'values': value,
'metadata': metadata
} for vector_id, value, metadata in zip(vector_ids, values, metadatas)]
try:
# TODO: Use the function upsert to upload the data to the database.
upsert_response = None
print(upsert_response)
except Exception as e:
print(e)
def search(self, text_query, top_k=5, hybrid_search=False):
filter = None
if hybrid_search and self.source_index:
# I implemented the filtering process to pull the 50 most relevant file names
# to the question. Make sure to adjust this number as you see fit.
source_docs = self.source_index.similarity_search(text_query, 50)
filter = {"source": {"$in":[doc.page_content for doc in source_docs]}}
# TODO: embed the text_query by using the embedding model
# TODO: choose your embedding model
# vector = self.embedding_client.feature_extraction(text_query)
# vector = self.embedding_client.embed_query(text_query)
vector = None
# TODO: use the vector representation of the text_query to
# search the database by using the query function.
result = None
docs = []
for res in result["matches"]:
# TODO: From the result's metadata, extract the "text" element.
pass
return docs
if __name__ == '__main__':
from langchain_community.document_loaders import GitLoader
from langchain_text_splitters import (
Language,
RecursiveCharacterTextSplitter,
)
loader = GitLoader(
clone_url="https://github.com/langchain-ai/langchain",
repo_path="./code_data/langchain_repo/",
branch="master",
)
python_splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.PYTHON, chunk_size=10000, chunk_overlap=100
)
docs = loader.load()
docs = [doc for doc in docs if doc.metadata['file_type'] in ['.py', '.md']]
docs = [doc for doc in docs if len(doc.page_content) < 50000]
docs = python_splitter.split_documents(docs)
for doc in docs:
doc.page_content = '# {}\n\n'.format(doc.metadata['source']) + doc.page_content
indexer = DataIndexer()
with open('/app/sources.txt', 'a') as file:
for doc in docs:
file.writelines(doc.metadata['source'] + '\n')
indexer.index_data(docs)
|