File size: 1,764 Bytes
5a2b2d3
 
 
 
 
 
 
 
 
 
78c941e
14d48df
5a2b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78c941e
 
5a2b2d3
 
14d48df
5a2b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#%%
import os
from dotenv import load_dotenv
load_dotenv('../../.env')

from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.runnables import RunnablePassthrough
import schemas
from prompts import (
    raw_prompt,
    raw_prompt_formatted,
    history_prompt_formatted,
    format_context,
    tokenizer
)
from data_indexing import DataIndexer


# data_indexer = DataIndexer()

llm = HuggingFaceEndpoint(
    repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
    huggingfacehub_api_token=os.environ['HF_TOKEN'],
    max_new_tokens=512,
    stop_sequences=[tokenizer.eos_token],
    streaming=True,
)

simple_chain = (raw_prompt | llm).with_types(input_type=schemas.UserQuestion)
# %%

# data_indexer = DataIndexer()

# TODO: create formatted_chain by piping raw_prompt_formatted and the LLM endpoint.
formatted_chain = (raw_prompt_formatted | llm).with_types(input_type=schemas.UserQuestion)

# # TODO: use history_prompt_formatted and HistoryInput to create the history_chain
history_chain = (history_prompt_formatted | llm).with_types(input_type=schemas.HistoryInput)

# # TODO: Let's construct the standalone_chain by piping standalone_prompt_formatted with the LLM
# standalone_chain = None

# input_1 = RunnablePassthrough.assign(new_question=standalone_chain)
# input_2 = {
#     'context': lambda x: format_context(data_indexer.search(x['new_question'])),
#     'standalone_question': lambda x: x['new_question']
# }
# input_to_rag_chain = input_1 | input_2

# # TODO: use input_to_rag_chain, rag_prompt_formatted, 
# # HistoryInput and the LLM to build the rag_chain.
# rag_chain = None

# # TODO:  Implement the filtered_rag_chain. It should be the 
# # same as the rag_chain but with hybrid_search = True.
# filtered_rag_chain = None