Spaces:
Sleeping
Sleeping
File size: 7,427 Bytes
5a2b2d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import requests\n",
"import os\n",
"\n",
"from dotenv import load_dotenv\n",
"load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'World!'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"url = 'https://bachephysicdun-backend.hf.space'\n",
"response = requests.get(url)\n",
"response.json()['Hello']"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from app.data_indexing import DataIndexer"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"sqlalchemy.orm.decl_api.Base"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from app.database import Base\n",
"\n",
"Base"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('./app/')\n",
"from app.models import User, Message"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
"Token is valid (permission: fineGrained).\n",
"Your token has been saved to /Users/amin/.cache/huggingface/token\n",
"Login successful\n",
"{'input_ids': [128000, 9906, 11, 1268, 527, 499, 30], 'attention_mask': [1, 1, 1, 1, 1, 1, 1]}\n"
]
}
],
"source": [
"import os\n",
"from transformers import AutoTokenizer\n",
"from huggingface_hub import login\n",
"\n",
"login(os.environ['HF_TOKEN'])\n",
"\n",
"# Load the tokenizer for the gated model\n",
"tokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Meta-Llama-3-8B-Instruct\")\n",
"\n",
"# Example usage\n",
"text = \"Hello, how are you?\"\n",
"tokens = tokenizer(text)\n",
"\n",
"print(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import InferenceClient\n",
"client = InferenceClient(\n",
" \"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
" token=os.environ['HF_TOKEN'],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Linear regression is a statistical method that is used to create a linear equation that best predicts the relationship between two or more variables. The goal of linear regression is to create a model that can be used to make predictions about the value of the dependent variable (y) based on the value of one or more independent variables (x). Linear regression is a widely used and powerful tool for modeling the relationship between variables, and it has many applications in fields such as finance, economics, and medicine.\n",
"\n",
"How does Linear Regression work? Linear regression works by using a set of data points, where each data point represents a pair of values for the dependent and independent variables. The algorithm then finds the line that best fits the data points, by minimizing the sum of the squared errors between the predicted values and the actual values. The line that is found is called the regression line, and it is used to make predictions about the value of the dependent variable.\n",
"\n",
"There are several types of linear regression, including:\n",
"\n",
"* Simple Linear Regression: This type of linear regression involves a single independent variable and a single dependent variable.\n",
"* Multiple Linear Regression: This type of linear regression involves multiple independent variables and a single dependent variable.\n",
"* Polynomial Regression: This type of linear regression involves a polynomial equation, rather than a linear equation.\n",
"* Non-Linear Regression: This type of linear regression involves a non-linear equation, rather than a linear equation.\n",
"\n",
"What are the advantages and disadvantages of Linear Regression? The advantages of linear regression include:\n",
"\n",
"* It is a widely used and well-established statistical method.\n",
"* It is easy to interpret and understand.\n",
"* It can be used to make predictions about the value of the dependent variable.\n",
"* It can be used to identify the relationship between the independent and dependent variables.\n",
"\n",
"The disadvantages of linear regression include:\n",
"\n",
"* It assumes a linear relationship between the independent and dependent variables, which may not always be the case.\n",
"* It can be sensitive to outliers and noisy data.\n",
"* It can be difficult to interpret the results, especially for complex models.\n",
"* It can be sensitive to the choice of variables and the data used.\n",
"\n",
"What are some common applications of Linear Regression? Linear regression has many applications in fields such as:\n",
"\n",
"* Finance: Linear regression can be used to predict stock prices, interest rates, and other financial variables.\n",
"* Economics: Linear regression can be used to model the relationship between economic variables, such as GDP and unemployment rates.\n",
"* Medicine: Linear regression can be used to model the relationship between medical variables, such as blood pressure and heart rate.\n",
"* Marketing: Linear regression can"
]
}
],
"source": [
"from langserve import RemoteRunnable\n",
"chain = RemoteRunnable(\"http://localhost:8000/simple\")\n",
"stream = chain.stream(input={'question':'What is Linear Regression?'})\n",
"for chunk in stream:\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|