File size: 6,732 Bytes
5a2b2d3
 
 
 
 
 
 
 
c6db65d
 
 
 
8dbef5d
5a2b2d3
8dbef5d
5a2b2d3
 
 
 
 
8dbef5d
5a2b2d3
 
 
 
 
 
 
 
 
 
 
8dbef5d
5a2b2d3
 
8dbef5d
 
 
 
 
 
 
5a2b2d3
 
 
8dbef5d
5a2b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dbef5d
 
5a2b2d3
 
 
 
 
 
 
8dbef5d
 
 
 
5a2b2d3
8dbef5d
 
5a2b2d3
8dbef5d
5a2b2d3
8dbef5d
 
 
5a2b2d3
 
 
 
 
 
 
 
 
 
 
8dbef5d
5a2b2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dbef5d
5a2b2d3
 
 
8dbef5d
 
 
 
 
 
 
5a2b2d3
 
 
 
8dbef5d
 
 
 
5a2b2d3
 
 
 
 
 
 
 
 
 
 
 
8dbef5d
5a2b2d3
 
 
 
 
 
8dbef5d
5a2b2d3
 
 
 
 
 
 
 
 
 
 
8dbef5d
5a2b2d3
8dbef5d
 
 
5a2b2d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import uuid
from pathlib import Path
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings

# from dotenv import load_dotenv
# # Specify the path to the .env file two directories up
# env_path = Path(__file__).resolve().parents[2] / '.env'
# load_dotenv(dotenv_path=env_path)


current_dir = Path(__file__).resolve().parent

class DataIndexer:

    source_file =  os.path.join(current_dir, 'sources.txt')

    def __init__(self, index_name='langchain-repo'):

        # TODO: choose your embedding model
        # self.embedding_client = InferenceClient(
        #     "dunzhang/stella_en_1.5B_v5",
        #      token=os.environ['HF_TOKEN'],
        # )
        self.embedding_client = OpenAIEmbeddings()
        self.index_name = index_name
        self.pinecone_client = Pinecone(api_key=os.environ.get('PINECONE_API_KEY'))

        if index_name not in self.pinecone_client.list_indexes().names():

            # TODO: create your index if it doesn't exist. Use the create_index function. 
            # Make sure to choose the dimension that corresponds to your embedding model
            self.pinecone_client.create_index(
                name=index_name,
                dimension=1536,
                metric='cosine',
                spec=ServerlessSpec(cloud='aws', region='us-east-1')
            )


        self.index = self.pinecone_client.Index(self.index_name)
        # TODO: make sure to build the index.
        self.source_index = self.get_source_index()

    def get_source_index(self):
        if not os.path.isfile(self.source_file):
            print('No source file')
            return None
        
        print('create source index')
        
        with open(self.source_file, 'r') as file:
            sources = file.readlines()
            
        sources = [s.rstrip('\n') for s in sources]
        vectorstore = Chroma.from_texts(
            sources, embedding=self.embedding_client
        )
        return vectorstore

    def index_data(self, docs, batch_size=32):

        with open(self.source_file, 'a') as file:
            for doc in docs:
                file.writelines(doc.metadata['source'] + '\n')

        for i in range(0, len(docs), batch_size):
            batch = docs[i: i + batch_size]

            # create a list of the vector representations of each text data in the batch
            # based on the selected model, choose you extract values
            # values = self.embedding_client.embed_documents([
            #     doc.page_content for doc in batch
            # ])

            # values = self.embedding_client.feature_extraction([
            #     doc.page_content for doc in batch
            # ])
            
            values = self.embedding_client.embed_documents([
                doc.page_content for doc in batch
            ]) # list of vectors -> vector presentation of the doc

            # create a list of unique identifiers for each element in the batch with the uuid package.
            vector_ids = [str(uuid.uuid4()) for _ in batch]

            # create a list of dictionaries representing the metadata. Capture the text data 
            # with the "text" key, and make sure to capture the rest of the doc.metadata.
            metadatas = [{
                'text': doc.page_content, **doc.metadata
            } for doc in batch]

            # create a list of dictionaries with keys "id" (the unique identifiers), "values"
            # (the vector representation), and "metadata" (the metadata).
            vectors = [{
                'id': vector_id,
                'values': value,
                'metadata': metadata
            } for vector_id, value, metadata in zip(vector_ids, values, metadatas)]

            try: 
                # TODO: Use the function upsert to upload the data to the database.
                upsert_response = self.index.upsert(vectors=vectors)
                print(upsert_response)
            except Exception as e:
                print(e)

    def search(self, text_query, top_k=5, hybrid_search=False):

        filter = None
        if hybrid_search and self.source_index:
            # I implemented the filtering process to pull the 50 most relevant file names
            # to the question. Make sure to adjust this number as you see fit.
            source_docs = self.source_index.similarity_search(text_query, 50)
            filter = {"source": {"$in":[doc.page_content for doc in source_docs]}}

        # TODO: embed the text_query by using the embedding model
        # TODO: choose your embedding model
        # vector = self.embedding_client.feature_extraction(text_query)
        # vector = self.embedding_client.embed_query(text_query)
        vector = self.embedding_client.embed_query(text_query)

        # TODO: use the vector representation of the text_query to 
        # search the database by using the query function.
        result = self.index.query(
            # namespace=self.index_name,
            vector=vector,
            filter=filter,
            top_k=top_k,
            include_metadata=True,
        )

        docs = []
        for res in result["matches"]:
            # TODO: From the result's metadata, extract the "text" element.
            metadata = res['metadata']
            if 'text' in metadata:
                text = metadata.pop('text')
                docs.append(text)

        return docs
    

if __name__ == '__main__':

    from langchain_community.document_loaders import GitLoader
    from langchain_text_splitters import (
        Language,
        RecursiveCharacterTextSplitter,
    )

    print('start the GitLoader')
    loader = GitLoader(
        clone_url="https://github.com/langchain-ai/langchain",
        repo_path="./code_data/langchain_repo/",
        branch="master",
    )

    print('perfrom python splitter')
    python_splitter = RecursiveCharacterTextSplitter.from_language(
        language=Language.PYTHON, chunk_size=10000, chunk_overlap=100
    )

    docs = loader.load()
    docs = [doc for doc in docs if doc.metadata['file_type'] in ['.py', '.md']]
    docs = [doc for doc in docs if len(doc.page_content) < 50000]
    docs = python_splitter.split_documents(docs)
    for doc in docs:
        doc.page_content = '# {}\n\n'.format(doc.metadata['source']) + doc.page_content

    print('instantiat the data indexer')
    indexer = DataIndexer()

    # with open('/app/sources.txt', 'a') as file:
    with open(indexer.source_file, 'a') as file:
        for doc in docs:
            file.writelines(doc.metadata['source'] + '\n')
    indexer.index_data(docs)