#%% import os from dotenv import load_dotenv load_dotenv('../../.env') from langchain_huggingface import HuggingFaceEndpoint from langchain_core.runnables import RunnablePassthrough import schemas from prompts import ( raw_prompt, raw_prompt_formatted, history_prompt_formatted, standalone_prompt_formatted, rag_prompt_formatted, format_context, tokenizer ) from data_indexing import DataIndexer llm = HuggingFaceEndpoint( repo_id="meta-llama/Meta-Llama-3-8B-Instruct", huggingfacehub_api_token=os.environ['HF_TOKEN'], max_new_tokens=512, stop_sequences=[tokenizer.eos_token], streaming=True, ) simple_chain = (raw_prompt | llm).with_types(input_type=schemas.UserQuestion) data_indexer = DataIndexer() # create formatted_chain by piping raw_prompt_formatted and the LLM endpoint. formatted_chain = (raw_prompt_formatted | llm).with_types(input_type=schemas.UserQuestion) # use history_prompt_formatted and HistoryInput to create the history_chain history_chain = (history_prompt_formatted | llm).with_types(input_type=schemas.HistoryInput) # Let's construct the standalone_chain by piping standalone_prompt_formatted with the LLM standalone_chain = (standalone_prompt_formatted | llm).with_types(input_type=schemas.HistoryInput) # store the result of standalone_chain chain in the variable "new_question". using the variable input_1 input_1 = RunnablePassthrough.assign(new_question=standalone_chain) # store the result of the search and pull new_question into the standalone_question input_2 = { 'context': lambda x: format_context(data_indexer.search(x['new_question'])), 'standalone_question': lambda x: x['new_question'] } input_to_rag_chain = input_1 | input_2 # use input_to_rag_chain, rag_prompt_formatted, # HistoryInput and the LLM to build the rag_chain. rag_chain = (input_to_rag_chain | rag_prompt_formatted | llm).with_types(input_type=schemas.HistoryInput) # Implement the filtered_rag_chain. It should be the # same as the rag_chain but with hybrid_search = True. input_1 = RunnablePassthrough.assign(new_question=standalone_chain) input_2 = { 'context': lambda x: format_context(data_indexer.search(x['new_question'], hybrid_search=True)), 'standalone_question': lambda x: x['new_question'] } input_to_filtered_rag_chain = input_1 | input_2 filtered_rag_chain = (input_to_filtered_rag_chain | rag_prompt_formatted | llm).with_types(input_type=schemas.HistoryInput)