import os import uuid from pathlib import Path from pinecone.grpc import PineconeGRPC as Pinecone from pinecone import ServerlessSpec from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings # from dotenv import load_dotenv # # Specify the path to the .env file two directories up # env_path = Path(__file__).resolve().parents[2] / '.env' # load_dotenv(dotenv_path=env_path) current_dir = Path(__file__).resolve().parent class DataIndexer: source_file = os.path.join(current_dir, 'sources.txt') def __init__(self, index_name='langchain-repo'): # TODO: choose your embedding model # self.embedding_client = InferenceClient( # "dunzhang/stella_en_1.5B_v5", # token=os.environ['HF_TOKEN'], # ) self.embedding_client = OpenAIEmbeddings() self.index_name = index_name self.pinecone_client = Pinecone(api_key=os.environ.get('PINECONE_API_KEY')) if index_name not in self.pinecone_client.list_indexes().names(): # TODO: create your index if it doesn't exist. Use the create_index function. # Make sure to choose the dimension that corresponds to your embedding model self.pinecone_client.create_index( name=index_name, dimension=1536, metric='cosine', spec=ServerlessSpec(cloud='aws', region='us-east-1') ) self.index = self.pinecone_client.Index(self.index_name) # TODO: make sure to build the index. self.source_index = self.get_source_index() def get_source_index(self): if not os.path.isfile(self.source_file): print('No source file') return None print('create source index') with open(self.source_file, 'r') as file: sources = file.readlines() sources = [s.rstrip('\n') for s in sources] vectorstore = Chroma.from_texts( sources, embedding=self.embedding_client ) return vectorstore def index_data(self, docs, batch_size=32): with open(self.source_file, 'a') as file: for doc in docs: file.writelines(doc.metadata['source'] + '\n') for i in range(0, len(docs), batch_size): batch = docs[i: i + batch_size] # create a list of the vector representations of each text data in the batch # based on the selected model, choose you extract values # values = self.embedding_client.embed_documents([ # doc.page_content for doc in batch # ]) # values = self.embedding_client.feature_extraction([ # doc.page_content for doc in batch # ]) values = self.embedding_client.embed_documents([ doc.page_content for doc in batch ]) # list of vectors -> vector presentation of the doc # create a list of unique identifiers for each element in the batch with the uuid package. vector_ids = [str(uuid.uuid4()) for _ in batch] # create a list of dictionaries representing the metadata. Capture the text data # with the "text" key, and make sure to capture the rest of the doc.metadata. metadatas = [{ 'text': doc.page_content, **doc.metadata } for doc in batch] # create a list of dictionaries with keys "id" (the unique identifiers), "values" # (the vector representation), and "metadata" (the metadata). vectors = [{ 'id': vector_id, 'values': value, 'metadata': metadata } for vector_id, value, metadata in zip(vector_ids, values, metadatas)] try: # TODO: Use the function upsert to upload the data to the database. upsert_response = self.index.upsert(vectors=vectors) print(upsert_response) except Exception as e: print(e) def search(self, text_query, top_k=5, hybrid_search=False): filter = None if hybrid_search and self.source_index: # I implemented the filtering process to pull the 50 most relevant file names # to the question. Make sure to adjust this number as you see fit. source_docs = self.source_index.similarity_search(text_query, 50) filter = {"source": {"$in":[doc.page_content for doc in source_docs]}} # TODO: embed the text_query by using the embedding model # TODO: choose your embedding model # vector = self.embedding_client.feature_extraction(text_query) # vector = self.embedding_client.embed_query(text_query) vector = self.embedding_client.embed_query(text_query) # TODO: use the vector representation of the text_query to # search the database by using the query function. result = self.index.query( # namespace=self.index_name, vector=vector, filter=filter, top_k=top_k, include_metadata=True, ) docs = [] for res in result["matches"]: # TODO: From the result's metadata, extract the "text" element. metadata = res['metadata'] if 'text' in metadata: text = metadata.pop('text') docs.append(text) return docs if __name__ == '__main__': from langchain_community.document_loaders import GitLoader from langchain_text_splitters import ( Language, RecursiveCharacterTextSplitter, ) print('start the GitLoader') loader = GitLoader( clone_url="https://github.com/langchain-ai/langchain", repo_path="./code_data/langchain_repo/", branch="master", ) print('perfrom python splitter') python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=10000, chunk_overlap=100 ) docs = loader.load() docs = [doc for doc in docs if doc.metadata['file_type'] in ['.py', '.md']] docs = [doc for doc in docs if len(doc.page_content) < 50000] docs = python_splitter.split_documents(docs) for doc in docs: doc.page_content = '# {}\n\n'.format(doc.metadata['source']) + doc.page_content print('instantiat the data indexer') indexer = DataIndexer() # with open('/app/sources.txt', 'a') as file: with open(indexer.source_file, 'a') as file: for doc in docs: file.writelines(doc.metadata['source'] + '\n') indexer.index_data(docs)