File size: 14,663 Bytes
79f86c4
caca082
 
 
 
 
3a57265
faa4f79
 
 
 
 
caca082
3a57265
caca082
 
 
 
 
 
 
 
db1c092
faa4f79
caca082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5826b06
 
db1c092
 
 
 
e8fa650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b99ae
 
db1c092
caca082
 
 
db1c092
caca082
 
4dffd30
caca082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623abec
 
caca082
 
 
7b92c9b
 
caca082
7b92c9b
caca082
 
 
7b92c9b
 
 
caca082
7b92c9b
 
3a57265
7b92c9b
 
 
 
caca082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623abec
caca082
 
faa4f79
caca082
 
623abec
caca082
 
623abec
caca082
 
623abec
caca082
 
623abec
caca082
 
 
623abec
caca082
 
 
 
 
 
 
 
 
623abec
caca082
 
 
 
 
 
 
 
79f86c4
 
caca082
 
 
 
 
 
 
 
 
 
 
 
623abec
caca082
 
 
 
 
 
 
 
 
 
 
 
623abec
caca082
 
623abec
caca082
 
623abec
caca082
 
623abec
caca082
 
 
623abec
caca082
 
 
 
 
 
 
7b92c9b
caca082
623abec
caca082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623abec
caca082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b92c9b
caca082
 
 
faa4f79
caca082
 
 
 
8378e4a
caca082
 
8378e4a
faa4f79
caca082
faa4f79
caca082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa4f79
 
caca082
 
 
 
 
 
faa4f79
 
 
caca082
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    AutoConfig,
)
from transformers.image_utils import load_image

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #00FF00 ; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''
# Définir le model_id avant de l'utiliser
model_id = "baconnier/Napoleon_4B_V0.0"
# TEXT MODEL - Utiliser Napoleon 4B avec configuration modifiée
# Charger la configuration
config = AutoConfig.from_pretrained(model_id)

# Extraire les attributs de text_config vers la configuration principale
if hasattr(config, "text_config"):
    for key, value in vars(config.text_config).items():
        if not hasattr(config, key):
            setattr(config, key, value)
else:
    # Ajouter manuellement les attributs si text_config n'existe pas
    if not hasattr(config, "vocab_size"):
        config.vocab_size = 262208
    if not hasattr(config, "hidden_size"):
        config.hidden_size = 2560
    if not hasattr(config, "num_hidden_layers"):
        config.num_hidden_layers = 34
    if not hasattr(config, "intermediate_size"):
        config.intermediate_size = 10240
    if not hasattr(config, "num_attention_heads"):
        config.num_attention_heads = 10
    if not hasattr(config, "sliding_window"):
        config.sliding_window = 1024
    if not hasattr(config, "sliding_window_pattern"):
        config.sliding_window_pattern = 6



tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    config=config,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True
)
model.eval()

# MULTIMODAL (OCR) MODELS - Garder Qwen2-VL pour OCR
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_VL,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    for i in bad_words_negative:
        if i in negative:
            return True
    return False

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

dtype = torch.float16 if device.type == "cuda" else torch.float32

# NAPOLEON 4B MULTIMODAL MODEL - Pour le traitement des images et vidéos
napoleon_processor = AutoProcessor.from_pretrained(model_id)

# VIDEO PROCESSING HELPER
def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            # Convert from BGR to RGB and then to PIL Image.
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# MAIN GENERATION FUNCTION
@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    text = input_dict["text"]
    files = input_dict.get("files", [])

    lower_text = text.lower().strip()

    # NAPOLEON 4B TEXT & MULTIMODAL (image) Branch
    if lower_text.startswith("@napoleon"):
        # Remove the napoleon flag from the prompt.
        prompt_clean = re.sub(r"@napoleon", "", text, flags=re.IGNORECASE).strip().strip('"')
        
        if files:
            # If image files are provided, load them.
            images = [load_image(f) for f in files]
            messages = [{
                "role": "user",
                "content": [
                    *[{"type": "image", "image": image} for image in images],
                    {"type": "text", "text": prompt_clean},
                ]
            }]
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
            ]
        
        inputs = tokenizer.apply_chat_template(
            messages, add_generation_prompt=True, tokenize=True,
            return_dict=True, return_tensors="pt"
        ).to(model.device, dtype=torch.bfloat16)
        
        streamer = TextIteratorStreamer(
            tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
        )
        
        generation_kwargs = {
            "input_ids": inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        buffer = ""
        yield progress_bar_html("Traitement avec Napoleon 4B")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # NAPOLEON 4B VIDEO Branch
    if lower_text.startswith("@video"):
        # Remove the video flag from the prompt.
        prompt_clean = re.sub(r"@video", "", text, flags=re.IGNORECASE).strip().strip('"')
        
        if files:
            # Assume the first file is a video.
            video_path = files[0]
            frames = downsample_video(video_path)
            
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
            ]
            
            # Append each frame as an image with a timestamp label.
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Image à {timestamp}s:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
            ]
            
        inputs = tokenizer.apply_chat_template(
            messages, add_generation_prompt=True, tokenize=True,
            return_dict=True, return_tensors="pt"
        ).to(model.device, dtype=torch.bfloat16)
        
        streamer = TextIteratorStreamer(
            tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
        )
        
        generation_kwargs = {
            "input_ids": inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        buffer = ""
        yield progress_bar_html("Traitement vidéo avec Napoleon 4B")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # Otherwise, handle text/chat generation.
    conversation = clean_chat_history(chat_history)
    conversation.append({"role": "user", "content": text})
    
    if files:
        images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        yield progress_bar_html("Traitement avec Qwen2VL OCR")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Texte d'entrée tronqué car plus long que {MAX_INPUT_TOKEN_LENGTH} tokens.")
        
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()

        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)
        yield final_response

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Nombre maximum de tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Température", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (échantillonnage nucleus)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Pénalité de répétition", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        [
            {
                "text": "@napoleon Créez une histoire courte basée sur les images.",
                "files": [
                    "examples/1111.jpg",
                    "examples/2222.jpg",
                    "examples/3333.jpg",
                ],
            }
        ],
        [{"text": "@napoleon Expliquez cette image", "files": ["examples/3.jpg"]}],
        [{"text": "@video Expliquez le contenu de cette publicité", "files": ["examples/videoplayback.mp4"]}],
        [{"text": "@napoleon Quel personnage de film est-ce?", "files": ["examples/9999.jpg"]}],
        ["@napoleon Expliquez la température critique d'une substance"],
        [{"text": "@napoleon Transcription de cette lettre", "files": ["examples/222.png"]}],
        [{"text": "@video Expliquez le contenu de la vidéo en détail", "files": ["examples/breakfast.mp4"]}],
        [{"text": "@video Décrivez la vidéo", "files": ["examples/Missing.mp4"]}],
        [{"text": "@video Expliquez ce qui se passe dans cette vidéo", "files": ["examples/oreo.mp4"]}],
        [{"text": "@video Résumez les événements de cette vidéo", "files": ["examples/sky.mp4"]}],
        [{"text": "@video Qu'y a-t-il dans cette vidéo?", "files": ["examples/redlight.mp4"]}],
        ["Programme Python pour la rotation de tableau"],
        ["@napoleon Expliquez la température critique d'une substance"]
    ],
    cache_examples=False,
    type="messages",
    description="# **Napoleon 4B `@napoleon pour le multimodal, @video pour la compréhension vidéo`**",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Saisir votre question", file_types=["image", "video"], file_count="multiple", placeholder="Utilisez @napoleon pour le multimodal, @video pour l'analyse vidéo !"),
    stop_btn="Arrêter la génération",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)