Spaces:
Build error
Build error
File size: 14,663 Bytes
79f86c4 caca082 3a57265 faa4f79 caca082 3a57265 caca082 db1c092 faa4f79 caca082 5826b06 db1c092 e8fa650 b8b99ae db1c092 caca082 db1c092 caca082 4dffd30 caca082 623abec caca082 7b92c9b caca082 7b92c9b caca082 7b92c9b caca082 7b92c9b 3a57265 7b92c9b caca082 623abec caca082 faa4f79 caca082 623abec caca082 623abec caca082 623abec caca082 623abec caca082 623abec caca082 623abec caca082 79f86c4 caca082 623abec caca082 623abec caca082 623abec caca082 623abec caca082 623abec caca082 623abec caca082 7b92c9b caca082 623abec caca082 623abec caca082 7b92c9b caca082 faa4f79 caca082 8378e4a caca082 8378e4a faa4f79 caca082 faa4f79 caca082 faa4f79 caca082 faa4f79 caca082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoConfig,
)
from transformers.image_utils import load_image
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00 ; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Définir le model_id avant de l'utiliser
model_id = "baconnier/Napoleon_4B_V0.0"
# TEXT MODEL - Utiliser Napoleon 4B avec configuration modifiée
# Charger la configuration
config = AutoConfig.from_pretrained(model_id)
# Extraire les attributs de text_config vers la configuration principale
if hasattr(config, "text_config"):
for key, value in vars(config.text_config).items():
if not hasattr(config, key):
setattr(config, key, value)
else:
# Ajouter manuellement les attributs si text_config n'existe pas
if not hasattr(config, "vocab_size"):
config.vocab_size = 262208
if not hasattr(config, "hidden_size"):
config.hidden_size = 2560
if not hasattr(config, "num_hidden_layers"):
config.num_hidden_layers = 34
if not hasattr(config, "intermediate_size"):
config.intermediate_size = 10240
if not hasattr(config, "num_attention_heads"):
config.num_attention_heads = 10
if not hasattr(config, "sliding_window"):
config.sliding_window = 1024
if not hasattr(config, "sliding_window_pattern"):
config.sliding_window_pattern = 6
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
model.eval()
# MULTIMODAL (OCR) MODELS - Garder Qwen2-VL pour OCR
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
for i in bad_words_negative:
if i in negative:
return True
return False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
dtype = torch.float16 if device.type == "cuda" else torch.float32
# NAPOLEON 4B MULTIMODAL MODEL - Pour le traitement des images et vidéos
napoleon_processor = AutoProcessor.from_pretrained(model_id)
# VIDEO PROCESSING HELPER
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert from BGR to RGB and then to PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# MAIN GENERATION FUNCTION
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.lower().strip()
# NAPOLEON 4B TEXT & MULTIMODAL (image) Branch
if lower_text.startswith("@napoleon"):
# Remove the napoleon flag from the prompt.
prompt_clean = re.sub(r"@napoleon", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# If image files are provided, load them.
images = [load_image(f) for f in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt_clean},
]
}]
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
"input_ids": inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Traitement avec Napoleon 4B")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# NAPOLEON 4B VIDEO Branch
if lower_text.startswith("@video"):
# Remove the video flag from the prompt.
prompt_clean = re.sub(r"@video", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
# Append each frame as an image with a timestamp label.
for frame in frames:
image, timestamp = frame
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Image à {timestamp}s:"})
messages[1]["content"].append({"type": "image", "url": image_path})
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
"input_ids": inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Traitement vidéo avec Napoleon 4B")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Otherwise, handle text/chat generation.
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Traitement avec Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Texte d'entrée tronqué car plus long que {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Nombre maximum de tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Température", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (échantillonnage nucleus)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Pénalité de répétition", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[
{
"text": "@napoleon Créez une histoire courte basée sur les images.",
"files": [
"examples/1111.jpg",
"examples/2222.jpg",
"examples/3333.jpg",
],
}
],
[{"text": "@napoleon Expliquez cette image", "files": ["examples/3.jpg"]}],
[{"text": "@video Expliquez le contenu de cette publicité", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@napoleon Quel personnage de film est-ce?", "files": ["examples/9999.jpg"]}],
["@napoleon Expliquez la température critique d'une substance"],
[{"text": "@napoleon Transcription de cette lettre", "files": ["examples/222.png"]}],
[{"text": "@video Expliquez le contenu de la vidéo en détail", "files": ["examples/breakfast.mp4"]}],
[{"text": "@video Décrivez la vidéo", "files": ["examples/Missing.mp4"]}],
[{"text": "@video Expliquez ce qui se passe dans cette vidéo", "files": ["examples/oreo.mp4"]}],
[{"text": "@video Résumez les événements de cette vidéo", "files": ["examples/sky.mp4"]}],
[{"text": "@video Qu'y a-t-il dans cette vidéo?", "files": ["examples/redlight.mp4"]}],
["Programme Python pour la rotation de tableau"],
["@napoleon Expliquez la température critique d'une substance"]
],
cache_examples=False,
type="messages",
description="# **Napoleon 4B `@napoleon pour le multimodal, @video pour la compréhension vidéo`**",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Saisir votre question", file_types=["image", "video"], file_count="multiple", placeholder="Utilisez @napoleon pour le multimodal, @video pour l'analyse vidéo !"),
stop_btn="Arrêter la génération",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)
|