import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoConfig,
)
from transformers.image_utils import load_image
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
'''
# Définir le model_id avant de l'utiliser
model_id = "baconnier/Napoleon_4B_V0.0"
# TEXT MODEL - Utiliser Napoleon 4B avec configuration modifiée
# Charger la configuration
config = AutoConfig.from_pretrained(model_id)
# Extraire les attributs de text_config vers la configuration principale
if hasattr(config, "text_config"):
for key, value in vars(config.text_config).items():
if not hasattr(config, key):
setattr(config, key, value)
else:
# Ajouter manuellement les attributs si text_config n'existe pas
if not hasattr(config, "vocab_size"):
config.vocab_size = 262208
if not hasattr(config, "hidden_size"):
config.hidden_size = 2560
if not hasattr(config, "num_hidden_layers"):
config.num_hidden_layers = 34
if not hasattr(config, "intermediate_size"):
config.intermediate_size = 10240
if not hasattr(config, "num_attention_heads"):
config.num_attention_heads = 10
if not hasattr(config, "sliding_window"):
config.sliding_window = 1024
if not hasattr(config, "sliding_window_pattern"):
config.sliding_window_pattern = 6
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
model.eval()
# MULTIMODAL (OCR) MODELS - Garder Qwen2-VL pour OCR
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
for i in bad_words_negative:
if i in negative:
return True
return False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
dtype = torch.float16 if device.type == "cuda" else torch.float32
# NAPOLEON 4B MULTIMODAL MODEL - Pour le traitement des images et vidéos
napoleon_processor = AutoProcessor.from_pretrained(model_id)
# VIDEO PROCESSING HELPER
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert from BGR to RGB and then to PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# MAIN GENERATION FUNCTION
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.lower().strip()
# NAPOLEON 4B TEXT & MULTIMODAL (image) Branch
if lower_text.startswith("@napoleon"):
# Remove the napoleon flag from the prompt.
prompt_clean = re.sub(r"@napoleon", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# If image files are provided, load them.
images = [load_image(f) for f in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt_clean},
]
}]
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
"input_ids": inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Traitement avec Napoleon 4B")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# NAPOLEON 4B VIDEO Branch
if lower_text.startswith("@video"):
# Remove the video flag from the prompt.
prompt_clean = re.sub(r"@video", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
# Append each frame as an image with a timestamp label.
for frame in frames:
image, timestamp = frame
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Image à {timestamp}s:"})
messages[1]["content"].append({"type": "image", "url": image_path})
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
"input_ids": inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Traitement vidéo avec Napoleon 4B")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Otherwise, handle text/chat generation.
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Traitement avec Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Texte d'entrée tronqué car plus long que {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Nombre maximum de tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Température", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (échantillonnage nucleus)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Pénalité de répétition", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[
{
"text": "@napoleon Créez une histoire courte basée sur les images.",
"files": [
"examples/1111.jpg",
"examples/2222.jpg",
"examples/3333.jpg",
],
}
],
[{"text": "@napoleon Expliquez cette image", "files": ["examples/3.jpg"]}],
[{"text": "@video Expliquez le contenu de cette publicité", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@napoleon Quel personnage de film est-ce?", "files": ["examples/9999.jpg"]}],
["@napoleon Expliquez la température critique d'une substance"],
[{"text": "@napoleon Transcription de cette lettre", "files": ["examples/222.png"]}],
[{"text": "@video Expliquez le contenu de la vidéo en détail", "files": ["examples/breakfast.mp4"]}],
[{"text": "@video Décrivez la vidéo", "files": ["examples/Missing.mp4"]}],
[{"text": "@video Expliquez ce qui se passe dans cette vidéo", "files": ["examples/oreo.mp4"]}],
[{"text": "@video Résumez les événements de cette vidéo", "files": ["examples/sky.mp4"]}],
[{"text": "@video Qu'y a-t-il dans cette vidéo?", "files": ["examples/redlight.mp4"]}],
["Programme Python pour la rotation de tableau"],
["@napoleon Expliquez la température critique d'une substance"]
],
cache_examples=False,
type="messages",
description="# **Napoleon 4B `@napoleon pour le multimodal, @video pour la compréhension vidéo`**",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Saisir votre question", file_types=["image", "video"], file_count="multiple", placeholder="Utilisez @napoleon pour le multimodal, @video pour l'analyse vidéo !"),
stop_btn="Arrêter la génération",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)