File size: 2,709 Bytes
6babc2d
 
b25d878
53f56d7
 
6babc2d
53f56d7
 
 
 
 
 
 
16d2c99
53f56d7
6babc2d
53f56d7
70fc62f
53f56d7
6babc2d
70fc62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d4f67
1584099
 
 
 
 
 
 
 
 
 
 
 
 
53f56d7
b25d878
 
 
 
53f56d7
6babc2d
53f56d7
70fc62f
53f56d7
 
3fb7bf3
7543368
4bba9ed
44f6549
5e0769d
4bba9ed
 
 
7a9ceb1
4bba9ed
7a9ceb1
d626111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import json
import os

# Load templates from environment variable with a safe default
templates_json = os.getenv('PROMPT_TEMPLATES', '{}')

try:
    # Parse JSON data with error handling
    prompt_data = json.loads(templates_json)
except json.JSONDecodeError:
    # Fallback to empty dict if JSON is invalid
    prompt_data = {}


# Create explanations dictionary with safe access
metaprompt_explanations = {
    key: data.get("description", "No description available")
    for key, data in prompt_data.items()
} if prompt_data else {}

# Generate markdown explanation
explanation_markdown = "".join([
    f"- **{key}**: {value}\n" 
    for key, value in metaprompt_explanations.items()
])

# Define models list
models = [
    "meta-llama/Meta-Llama-3-70B-Instruct",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "meta-llama/Llama-3.1-70B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-2-13b-chat-hf",
    "meta-llama/Llama-2-7b-chat-hf",
    "HuggingFaceH4/zephyr-7b-beta",
    "HuggingFaceH4/zephyr-7b-alpha",
    "Qwen/Qwen2.5-72B-Instruct",
    "Qwen/Qwen2.5-1.5B",
    "microsoft/Phi-3.5-mini-instruct"
]

examples=[
        ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "done"],
        ["Tell me about that guy who invented the light bulb", "physics"],
        ["Explain the universe.", "star"],
        ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
        ["List American presidents.", "verse"],                        
        ["Explain why the experiment failed.", "morphosis"],
        ["Is nuclear energy good?", "verse"],
        ["How does a computer work?", "phor"],
        ["How to make money fast?", "done"],
        ["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],                    
    ]

# Get API token with error handling
api_token = os.getenv('HF_API_TOKEN')
if not api_token:
    raise ValueError("HF_API_TOKEN not found in environment variables")

# Create meta_prompts dictionary with safe access
meta_prompts = {
    key: data.get("template", "No template available")
    for key, data in prompt_data.items()
} if prompt_data else {}

prompt_refiner_model = os.getenv('prompt_refiner_model', 'meta-llama/Llama-3.1-8B-Instruct')
print("prompt_refiner_model used :"+prompt_refiner_model)

#prompt_refiner_model = os.getenv('prompt_refiner_model')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')


openai_metaprompt = os.getenv('openai_metaprompt')

advanced_meta_prompt = os.getenv('advanced_meta_prompt')