File size: 5,436 Bytes
0bb3006
a217992
2e9f353
0b82b81
2e9f353
8100125
 
a217992
8100125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b54c30
8100125
 
 
 
 
 
 
 
 
 
 
 
a217992
 
 
 
 
8100125
 
 
 
 
 
a217992
 
 
 
 
 
8100125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
006bfbb
a217992
afbf3d7
4936217
 
 
a217992
8100125
a217992
8100125
 
 
 
 
 
 
 
81c5b54
2e6366e
 
 
 
 
 
8100125
 
b68c9a6
 
 
 
 
ea1145e
b68c9a6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
from prompt_refiner import PromptRefiner
from variables import models, explanation_markdown
from variables import *
from custom_css import custom_css

class GradioInterface:
    def __init__(self, prompt_refiner: PromptRefiner, custom_css):
        self.prompt_refiner = prompt_refiner
        with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
            with gr.Column(elem_classes=["container", "title-container"]):
                gr.Markdown("# PROMPT++")
                gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
                gr.Markdown("Learn how to generate an improved version of your prompts.")
        
            with gr.Column(elem_classes=["container", "input-container"]):
                prompt_text = gr.Textbox(
                    label="Type your prompt (or let it empty to see metaprompt)",
                    lines=5
                )
                meta_prompt_choice = gr.Radio(
                    ["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
                    label="Choose Meta Prompt",
                    value="star",
                    elem_classes=["no-background", "radio-group"]
                )
                refine_button = gr.Button("Refine Prompt")  
                
                with gr.Row(elem_classes=["container2"]):
                    with gr.Accordion("Examples", open=False):
                        gr.Examples(
                            examples=examples,
                            inputs=[prompt_text, meta_prompt_choice]
                        )
                       
                    with gr.Accordion("Meta Prompt explanation", open=False):
                        gr.Markdown(explanation_markdown)
                
            with gr.Column(elem_classes=["container", "analysis-container"]):
                gr.Markdown(' ')
                gr.Markdown("### Initial prompt analysis")
                analysis_evaluation = gr.Markdown()
                gr.Markdown("### Refined Prompt")
                refined_prompt = gr.Textbox(
                    label="Refined Prompt",
                    interactive=True,
                    show_label=True,
                    show_copy_button=True,
                )
                gr.Markdown("### Explanation of Refinements")
                explanation_of_refinements = gr.Markdown()
            
            with gr.Column(elem_classes=["container", "model-container"]):
                with gr.Row():
                    apply_model = gr.Dropdown(models,
                        value="meta-llama/Llama-3.1-8B-Instruct",
                        label="Choose the Model",
                        container=False,
                        scale=1,
                        min_width=300
                    )
                    apply_button = gr.Button("Apply MetaPrompt")

                gr.Markdown("### Prompts on choosen model")
                with gr.Tabs():
                    with gr.TabItem("Original Prompt Output"):
                        original_output = gr.Markdown()
                    with gr.TabItem("Refined Prompt Output"):
                        refined_output = gr.Markdown()
            with gr.Accordion("Full Response JSON", open=False, visible=True):
                full_response_json = gr.JSON()
                
            refine_button.click(
                fn=self.refine_prompt,
                inputs=[prompt_text, meta_prompt_choice],
                outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
            )

            apply_button.click(
                fn=self.apply_prompts,
                inputs=[prompt_text, refined_prompt, apply_model],
                outputs=[original_output, refined_output],
                api_name="apply_prompts"
            )
            gr.HTML(
                "<p style='text-align: center; color:orange;'>⚠ This space is in progress, and we're actively working on it, so you might find some bugs! Please report any issues you have in the Community tab to help us make it better for all.</p>"
                )

    def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
        initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(prompt, meta_prompt_choice)
        analysis_evaluation = f"\n\n{initial_prompt_evaluation}"
        return (
            analysis_evaluation,
            refined_prompt,
            explanation_refinements,
            full_response
        )

    def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
        try:
            original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
            refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
            return original_output, refined_output
        except Exception as e:
            return f"Error: {str(e)}", f"Error: {str(e)}"

    def launch(self, share=False):
        self.interface.launch(share=share)


if __name__ == '__main__':
    # Initialize the prompt refiner with API token
    prompt_refiner = PromptRefiner(api_token,meta_prompts)
    
    # Create the Gradio interface
    gradio_interface = GradioInterface(prompt_refiner, custom_css)
    
    # Launch the interface
    gradio_interface.launch(share=True)