baconnier's picture
Update app.py
9840de1 verified
raw
history blame
13.1 kB
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal
from huggingface_hub.errors import HfHubHTTPError
from custom_css import *
from variables import *
class PromptInput(BaseModel):
text: str = Field(..., description="The initial prompt text")
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")
class RefinementOutput(BaseModel):
query_analysis: Optional[str] = None
initial_prompt_evaluation: Optional[str] = None
refined_prompt: Optional[str] = None
explanation_of_refinements: Optional[str] = None
raw_content: Optional[str] = None
class PromptRefiner:
def __init__(self, api_token: str):
self.client = InferenceClient(token=api_token, timeout=300)
self.meta_prompts = {
"morphosis": original_meta_prompt,
"verse": new_meta_prompt,
"physics": metaprompt1,
"bolism": loic_metaprompt,
"done": metadone,
"star": echo_prompt_refiner,
"math": math_meta_prompt,
"arpe": autoregressive_metaprompt
}
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
try:
# Select meta prompt using dictionary instead of if-elif chain
selected_meta_prompt = self.meta_prompts.get(
prompt_input.meta_prompt_choice,
advanced_meta_prompt
)
messages = [
{
"role": "system",
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'
},
{
"role": "user",
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
}
]
response = self.client.chat_completion(
model=prompt_refiner_model,
messages=messages,
max_tokens=2000,
temperature=0.8
)
response_content = response.choices[0].message.content.strip()
# Parse the response
result = self._parse_response(response_content)
return (
result.get('initial_prompt_evaluation', ''),
result.get('refined_prompt', ''),
result.get('explanation_of_refinements', ''),
result
)
except HfHubHTTPError as e:
return (
"Error: Model timeout. Please try again later.",
"The selected model is currently experiencing high traffic.",
"The selected model is currently experiencing high traffic.",
{}
)
except Exception as e:
return (
f"Error: {str(e)}",
"",
"An unexpected error occurred.",
{}
)
def _parse_response(self, response_content: str) -> dict:
try:
# Try to find JSON in response
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
json_output = json.loads(f'"{json_str}"')
if isinstance(json_output, str):
json_output = json.loads(json_output)
output={
key: value.replace('\\"', '"') if isinstance(value, str) else value
for key, value in json_output.items()
}
output['response_content']=json_output
# Clean up JSON values
return output
# Fallback to regex parsing if no JSON found
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
output['response_content']=response_content
return output
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing response: {e}")
print(f"Raw content: {response_content}")
return {
"initial_prompt_evaluation": "Error parsing response",
"refined_prompt": "",
"explanation_of_refinements": str(e),
'response_content':str(e)
}
def apply_prompt(self, prompt: str, model: str) -> str:
try:
messages = [
{
"role": "system",
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections. Incorporate a variety of lists, headers, and text to make the answer visually appealing"
},
{
"role": "user",
"content": prompt
}
]
response = self.client.chat_completion(
model=model,
messages=messages,
max_tokens=2000,
temperature=0.8
)
output = response.choices[0].message.content.strip()
return output.replace('\n\n', '\n').strip()
except Exception as e:
return f"Error: {str(e)}"
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner):
self.prompt_refiner = prompt_refiner
custom_css = custom_css
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(
label="Type your prompt (or let it empty to see metaprompt)",
# elem_classes="no-background",
#elem_classes="container2",
lines=5
)
meta_prompt_choice = gr.Radio(
["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
label="Choose Meta Prompt",
value="star",
elem_classes=["no-background", "radio-group"]
# elem_classes=[ "radio-group"]
)
refine_button = gr.Button("Refine Prompt")
# Option 1: Put Examples here (before Meta Prompt explanation)
with gr.Row(elem_classes=["container2"]):
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=[
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
],
inputs=[prompt_text, meta_prompt_choice]
)
with gr.Accordion("Meta Prompt explanation", open=False):
gr.Markdown(explanation_markdown)
# Option 2: Or put Examples here (after the button)
# with gr.Accordion("Examples", open=False):
# gr.Examples(...)
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown(' ')
gr.Markdown("### Initial prompt analysis")
analysis_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
label="Refined Prompt",
interactive=True,
show_label=True, # Must be True for copy button to show
show_copy_button=True, # Adds the copy button
# elem_classes="no-background"
)
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown()
with gr.Column(elem_classes=["container", "model-container"]):
# gr.Markdown("## See MetaPrompt Impact")
with gr.Row():
apply_model = gr.Dropdown(models,
value="meta-llama/Llama-3.1-8B-Instruct",
label="Choose the Model",
container=False, # This removes the container around the dropdown
scale=1, # Controls the width relative to other components
min_width=300 # Sets minimum width in pixels
# elem_classes="no-background"
)
apply_button = gr.Button("Apply MetaPrompt")
# with gr.Column(elem_classes=["container", "results-container"]):
gr.Markdown("### Prompts on choosen model")
with gr.Tabs():
with gr.TabItem("Original Prompt Output"):
original_output = gr.Markdown()
with gr.TabItem("Refined Prompt Output"):
refined_output = gr.Markdown()
with gr.Accordion("Full Response JSON", open=False, visible=True):
full_response_json = gr.JSON()
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output]
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
# Since result is a tuple with 4 elements based on the return value of prompt_refiner.refine_prompt
initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(input_data)
analysis_evaluation = f"\n\n{initial_prompt_evaluation}"
return (
analysis_evaluation,
refined_prompt,
explanation_refinements,
full_response
)
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
return original_output, refined_output
def launch(self, share=False):
self.interface.launch(share=share)
if __name__ == '__main__':
prompt_refiner = PromptRefiner(api_token)
gradio_interface = GradioInterface(prompt_refiner)
gradio_interface.launch(share=True)