Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -86,14 +86,12 @@ class PromptRefiner:
|
|
86 |
{"role": "system", "content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.Incorporate a variety of lists, headers, and text to make the answer visually appealing"},
|
87 |
{"role": "user", "content": prompt}
|
88 |
]
|
89 |
-
|
90 |
response = self.client.chat_completion(
|
91 |
model=model,
|
92 |
messages=messages,
|
93 |
max_tokens=2000,
|
94 |
temperature=0.8
|
95 |
)
|
96 |
-
|
97 |
output = response.choices[0].message.content.strip()
|
98 |
output = output.replace('\n\n', '\n').strip()
|
99 |
return output
|
@@ -103,8 +101,6 @@ class PromptRefiner:
|
|
103 |
class GradioInterface:
|
104 |
def __init__(self, prompt_refiner: PromptRefiner):
|
105 |
self.prompt_refiner = prompt_refiner
|
106 |
-
|
107 |
-
# Define custom CSS for containers
|
108 |
custom_css = """
|
109 |
.container {
|
110 |
border: 2px solid #2196F3;
|
@@ -126,7 +122,6 @@ class GradioInterface:
|
|
126 |
font-size: 1.2em;
|
127 |
}
|
128 |
|
129 |
-
/* Remove default Gradio styles */
|
130 |
.no-background > div:first-child {
|
131 |
border: none !important;
|
132 |
background: transparent !important;
|
@@ -140,7 +135,6 @@ class GradioInterface:
|
|
140 |
.results-container::before { content: 'RESULTS'; }
|
141 |
.examples-container::before { content: 'EXAMPLES'; }
|
142 |
|
143 |
-
/* Custom styling for radio buttons */
|
144 |
.radio-group {
|
145 |
display: flex;
|
146 |
gap: 10px;
|
@@ -149,13 +143,11 @@ class GradioInterface:
|
|
149 |
"""
|
150 |
|
151 |
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
|
152 |
-
# Title Container
|
153 |
with gr.Column(elem_classes=["container", "title-container"]):
|
154 |
gr.Markdown("# PROMPT++")
|
155 |
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
|
156 |
-
gr.Markdown("Learn how to generate an improved version of your prompts.
|
157 |
|
158 |
-
# Input Container
|
159 |
with gr.Column(elem_classes=["container", "input-container"]):
|
160 |
prompt_text = gr.Textbox(
|
161 |
label="Type the prompt (or let it empty to see metaprompt)",
|
@@ -171,7 +163,6 @@ class GradioInterface:
|
|
171 |
)
|
172 |
refine_button = gr.Button("Refine Prompt")
|
173 |
|
174 |
-
# Analysis Container
|
175 |
with gr.Column(elem_classes=["container", "analysis-container"]):
|
176 |
gr.Markdown("### Initial prompt analysis")
|
177 |
analysis_evaluation = gr.Markdown()
|
@@ -186,7 +177,6 @@ class GradioInterface:
|
|
186 |
with gr.Accordion("Full Response JSON", open=False, visible=False):
|
187 |
full_response_json = gr.JSON()
|
188 |
|
189 |
-
# Model Application Container
|
190 |
with gr.Column(elem_classes=["container", "model-container"]):
|
191 |
gr.Markdown("## See MetaPrompt Impact")
|
192 |
with gr.Row():
|
@@ -201,12 +191,11 @@ class GradioInterface:
|
|
201 |
"microsoft/Phi-3.5-mini-instruct"
|
202 |
],
|
203 |
value="meta-llama/Meta-Llama-3-70B-Instruct",
|
204 |
-
label="Choose the Model
|
205 |
elem_classes="no-background"
|
206 |
)
|
207 |
apply_button = gr.Button("Apply MetaPrompt")
|
208 |
|
209 |
-
# Results Container
|
210 |
with gr.Column(elem_classes=["container", "results-container"]):
|
211 |
with gr.Tabs():
|
212 |
with gr.TabItem("Original Prompt Output"):
|
@@ -214,7 +203,6 @@ class GradioInterface:
|
|
214 |
with gr.TabItem("Refined Prompt Output"):
|
215 |
refined_output = gr.Markdown()
|
216 |
|
217 |
-
# Examples Container
|
218 |
with gr.Column(elem_classes=["container", "examples-container"]):
|
219 |
with gr.Accordion("Examples", open=True):
|
220 |
gr.Examples(
|
@@ -228,12 +216,11 @@ class GradioInterface:
|
|
228 |
["Is nuclear energy good?", "verse"],
|
229 |
["How does a computer work?", "phor"],
|
230 |
["How to make money fast?", "done"],
|
231 |
-
["how can you
|
232 |
],
|
233 |
inputs=[prompt_text, meta_prompt_choice]
|
234 |
)
|
235 |
|
236 |
-
# Connect the buttons to their functions
|
237 |
refine_button.click(
|
238 |
fn=self.refine_prompt,
|
239 |
inputs=[prompt_text, meta_prompt_choice],
|
@@ -246,7 +233,6 @@ class GradioInterface:
|
|
246 |
outputs=[original_output, refined_output]
|
247 |
)
|
248 |
|
249 |
-
# Your existing methods remain the same
|
250 |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
251 |
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
|
252 |
result = self.prompt_refiner.refine_prompt(input_data)
|
@@ -278,7 +264,6 @@ metaprompt_explanations = {
|
|
278 |
|
279 |
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
|
280 |
|
281 |
-
# Main code to run the application
|
282 |
if __name__ == '__main__':
|
283 |
meta_info=""
|
284 |
api_token = os.getenv('HF_API_TOKEN')
|
@@ -297,7 +282,6 @@ if __name__ == '__main__':
|
|
297 |
math_meta_prompt = os.getenv('metamath')
|
298 |
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')
|
299 |
|
300 |
-
|
301 |
prompt_refiner = PromptRefiner(api_token)
|
302 |
gradio_interface = GradioInterface(prompt_refiner)
|
303 |
gradio_interface.launch(share=True)
|
|
|
86 |
{"role": "system", "content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.Incorporate a variety of lists, headers, and text to make the answer visually appealing"},
|
87 |
{"role": "user", "content": prompt}
|
88 |
]
|
|
|
89 |
response = self.client.chat_completion(
|
90 |
model=model,
|
91 |
messages=messages,
|
92 |
max_tokens=2000,
|
93 |
temperature=0.8
|
94 |
)
|
|
|
95 |
output = response.choices[0].message.content.strip()
|
96 |
output = output.replace('\n\n', '\n').strip()
|
97 |
return output
|
|
|
101 |
class GradioInterface:
|
102 |
def __init__(self, prompt_refiner: PromptRefiner):
|
103 |
self.prompt_refiner = prompt_refiner
|
|
|
|
|
104 |
custom_css = """
|
105 |
.container {
|
106 |
border: 2px solid #2196F3;
|
|
|
122 |
font-size: 1.2em;
|
123 |
}
|
124 |
|
|
|
125 |
.no-background > div:first-child {
|
126 |
border: none !important;
|
127 |
background: transparent !important;
|
|
|
135 |
.results-container::before { content: 'RESULTS'; }
|
136 |
.examples-container::before { content: 'EXAMPLES'; }
|
137 |
|
|
|
138 |
.radio-group {
|
139 |
display: flex;
|
140 |
gap: 10px;
|
|
|
143 |
"""
|
144 |
|
145 |
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
|
|
|
146 |
with gr.Column(elem_classes=["container", "title-container"]):
|
147 |
gr.Markdown("# PROMPT++")
|
148 |
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
|
149 |
+
gr.Markdown("Learn how to generate an improved version of your prompts.")
|
150 |
|
|
|
151 |
with gr.Column(elem_classes=["container", "input-container"]):
|
152 |
prompt_text = gr.Textbox(
|
153 |
label="Type the prompt (or let it empty to see metaprompt)",
|
|
|
163 |
)
|
164 |
refine_button = gr.Button("Refine Prompt")
|
165 |
|
|
|
166 |
with gr.Column(elem_classes=["container", "analysis-container"]):
|
167 |
gr.Markdown("### Initial prompt analysis")
|
168 |
analysis_evaluation = gr.Markdown()
|
|
|
177 |
with gr.Accordion("Full Response JSON", open=False, visible=False):
|
178 |
full_response_json = gr.JSON()
|
179 |
|
|
|
180 |
with gr.Column(elem_classes=["container", "model-container"]):
|
181 |
gr.Markdown("## See MetaPrompt Impact")
|
182 |
with gr.Row():
|
|
|
191 |
"microsoft/Phi-3.5-mini-instruct"
|
192 |
],
|
193 |
value="meta-llama/Meta-Llama-3-70B-Instruct",
|
194 |
+
label="Choose the Model",
|
195 |
elem_classes="no-background"
|
196 |
)
|
197 |
apply_button = gr.Button("Apply MetaPrompt")
|
198 |
|
|
|
199 |
with gr.Column(elem_classes=["container", "results-container"]):
|
200 |
with gr.Tabs():
|
201 |
with gr.TabItem("Original Prompt Output"):
|
|
|
203 |
with gr.TabItem("Refined Prompt Output"):
|
204 |
refined_output = gr.Markdown()
|
205 |
|
|
|
206 |
with gr.Column(elem_classes=["container", "examples-container"]):
|
207 |
with gr.Accordion("Examples", open=True):
|
208 |
gr.Examples(
|
|
|
216 |
["Is nuclear energy good?", "verse"],
|
217 |
["How does a computer work?", "phor"],
|
218 |
["How to make money fast?", "done"],
|
219 |
+
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
|
220 |
],
|
221 |
inputs=[prompt_text, meta_prompt_choice]
|
222 |
)
|
223 |
|
|
|
224 |
refine_button.click(
|
225 |
fn=self.refine_prompt,
|
226 |
inputs=[prompt_text, meta_prompt_choice],
|
|
|
233 |
outputs=[original_output, refined_output]
|
234 |
)
|
235 |
|
|
|
236 |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
237 |
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
|
238 |
result = self.prompt_refiner.refine_prompt(input_data)
|
|
|
264 |
|
265 |
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
|
266 |
|
|
|
267 |
if __name__ == '__main__':
|
268 |
meta_info=""
|
269 |
api_token = os.getenv('HF_API_TOKEN')
|
|
|
282 |
math_meta_prompt = os.getenv('metamath')
|
283 |
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')
|
284 |
|
|
|
285 |
prompt_refiner = PromptRefiner(api_token)
|
286 |
gradio_interface = GradioInterface(prompt_refiner)
|
287 |
gradio_interface.launch(share=True)
|