Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -167,23 +167,7 @@ class GradioInterface:
|
|
167 |
)
|
168 |
with gr.Accordion("Meta Prompt explanation", open=False):
|
169 |
gr.Markdown(explanation_markdown)
|
170 |
-
|
171 |
-
with gr.Accordion("Examples", open=False):
|
172 |
-
gr.Examples(
|
173 |
-
examples=[
|
174 |
-
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
|
175 |
-
["Tell me about that guy who invented the light bulb", "physics"],
|
176 |
-
["Explain the universe.", "star"],
|
177 |
-
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
|
178 |
-
["List American presidents.", "verse"],
|
179 |
-
["Explain why the experiment failed.", "morphosis"],
|
180 |
-
["Is nuclear energy good?", "verse"],
|
181 |
-
["How does a computer work?", "phor"],
|
182 |
-
["How to make money fast?", "done"],
|
183 |
-
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
|
184 |
-
],
|
185 |
-
inputs=[prompt_text, meta_prompt_choice]
|
186 |
-
)
|
187 |
|
188 |
with gr.Column(elem_classes=["container", "analysis-container"]):
|
189 |
gr.Markdown("### Initial prompt analysis")
|
@@ -238,7 +222,23 @@ class GradioInterface:
|
|
238 |
inputs=[prompt_text, refined_prompt, apply_model],
|
239 |
outputs=[original_output, refined_output]
|
240 |
)
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
243 |
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
|
244 |
result = self.prompt_refiner.refine_prompt(input_data)
|
|
|
167 |
)
|
168 |
with gr.Accordion("Meta Prompt explanation", open=False):
|
169 |
gr.Markdown(explanation_markdown)
|
170 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
with gr.Column(elem_classes=["container", "analysis-container"]):
|
173 |
gr.Markdown("### Initial prompt analysis")
|
|
|
222 |
inputs=[prompt_text, refined_prompt, apply_model],
|
223 |
outputs=[original_output, refined_output]
|
224 |
)
|
225 |
+
with gr.Column(elem_classes=["container", "examples-container"]):
|
226 |
+
with gr.Accordion("Examples", open=False):
|
227 |
+
gr.Examples(
|
228 |
+
examples=[
|
229 |
+
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
|
230 |
+
["Tell me about that guy who invented the light bulb", "physics"],
|
231 |
+
["Explain the universe.", "star"],
|
232 |
+
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
|
233 |
+
["List American presidents.", "verse"],
|
234 |
+
["Explain why the experiment failed.", "morphosis"],
|
235 |
+
["Is nuclear energy good?", "verse"],
|
236 |
+
["How does a computer work?", "phor"],
|
237 |
+
["How to make money fast?", "done"],
|
238 |
+
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
|
239 |
+
],
|
240 |
+
inputs=[prompt_text, meta_prompt_choice]
|
241 |
+
)
|
242 |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
243 |
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
|
244 |
result = self.prompt_refiner.refine_prompt(input_data)
|