Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,6 @@ import gradio as gr
|
|
6 |
from pydantic import BaseModel, Field
|
7 |
from typing import Optional, Literal
|
8 |
|
9 |
-
metaprompt_explanations = {
|
10 |
-
"star": "The ECHO (Enhanced Chain of Harmonized Optimization) method, which provides a comprehensive and structured approach to prompt refinement, including multiple stages of analysis, expansion, and synthesis.",
|
11 |
-
"done": "A detailed, multi-step approach that emphasizes role-playing, structured output, and various advanced prompting techniques like Chain-of-Thought and Tree of Thoughts.",
|
12 |
-
"physics": "A prompt enhancement method that focuses on role-playing, structured output, and incorporating multiple advanced prompting techniques such as Chain-of-Thought and Tree of Thoughts.",
|
13 |
-
"morphosis": "A simplified approach that focuses on clear language, logical flow, and essential elements of prompt engineering without complex techniques.",
|
14 |
-
"verse": "A structured method that emphasizes analyzing the initial prompt, evaluating its strengths and weaknesses, and refining it with a focus on information flow and versatility.",
|
15 |
-
"phor": "An advanced prompt engineering approach that combines multiple techniques, including clarity enhancement, structural improvement, and various specialized prompting methods like Chain-of-Thought and Few-Shot Learning.",
|
16 |
-
"bolism": "A prompt refinement method that emphasizes leveraging the autoregressive nature of language models, encouraging reasoning before conclusions, and providing detailed instructions for output formatting."
|
17 |
-
}
|
18 |
-
|
19 |
class PromptInput(BaseModel):
|
20 |
text: str = Field(..., description="The initial prompt text")
|
21 |
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism"] = Field(..., description="Choice of meta prompt strategy")
|
@@ -26,7 +16,6 @@ class RefinementOutput(BaseModel):
|
|
26 |
refined_prompt: Optional[str] = None
|
27 |
explanation_of_refinements: Optional[str] = None
|
28 |
raw_content: Optional[str] = None
|
29 |
-
metaprompt_explanation: Optional[str] = None # New field
|
30 |
|
31 |
class PromptRefiner:
|
32 |
def __init__(self, api_token: str):
|
@@ -53,10 +42,10 @@ class PromptRefiner:
|
|
53 |
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
|
54 |
]
|
55 |
response = self.client.chat_completion(
|
56 |
-
model=
|
57 |
messages=messages,
|
58 |
-
max_tokens=
|
59 |
-
temperature=0.
|
60 |
)
|
61 |
response_content = response.choices[0].message.content.strip()
|
62 |
try:
|
@@ -71,10 +60,6 @@ class PromptRefiner:
|
|
71 |
for key, value in json_output.items():
|
72 |
if isinstance(value, str):
|
73 |
json_output[key] = value.replace('\\"', '"')
|
74 |
-
|
75 |
-
# Add the metaprompt explanation to the output
|
76 |
-
json_output['metaprompt_explanation'] = metaprompt_explanations.get(prompt_input.meta_prompt_choice, "")
|
77 |
-
|
78 |
return RefinementOutput(**json_output, raw_content=response_content)
|
79 |
else:
|
80 |
raise ValueError("No JSON found in the response")
|
@@ -89,10 +74,6 @@ class PromptRefiner:
|
|
89 |
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
|
90 |
else:
|
91 |
output[key] = ""
|
92 |
-
|
93 |
-
# Add the metaprompt explanation to the output
|
94 |
-
output['metaprompt_explanation'] = metaprompt_explanations.get(prompt_input.meta_prompt_choice, "")
|
95 |
-
|
96 |
return RefinementOutput(**output, raw_content=response_content)
|
97 |
|
98 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
@@ -138,17 +119,14 @@ class GradioInterface:
|
|
138 |
gr.Markdown("### Explanation of Refinements")
|
139 |
explanation_of_refinements = gr.Markdown(label="Explanation of Refinements")
|
140 |
|
141 |
-
with gr.Row():
|
142 |
-
gr.Markdown("### Metaprompt Explanation")
|
143 |
-
metaprompt_explanation = gr.Markdown(label="Metaprompt Explanation")
|
144 |
-
|
145 |
with gr.Accordion("Full Response JSON", open=False,visible=False):
|
146 |
full_response_json = gr.JSON()
|
147 |
|
|
|
148 |
refine_button.click(
|
149 |
fn=self.refine_prompt,
|
150 |
inputs=[prompt_text, meta_prompt_choice],
|
151 |
-
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json
|
152 |
)
|
153 |
with gr.Row():
|
154 |
apply_model = gr.Dropdown(
|
@@ -203,8 +181,7 @@ class GradioInterface:
|
|
203 |
analysis_evaluation,
|
204 |
result.refined_prompt,
|
205 |
result.explanation_of_refinements,
|
206 |
-
result.dict()
|
207 |
-
result.metaprompt_explanation
|
208 |
)
|
209 |
|
210 |
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
|
|
|
6 |
from pydantic import BaseModel, Field
|
7 |
from typing import Optional, Literal
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class PromptInput(BaseModel):
|
10 |
text: str = Field(..., description="The initial prompt text")
|
11 |
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism"] = Field(..., description="Choice of meta prompt strategy")
|
|
|
16 |
refined_prompt: Optional[str] = None
|
17 |
explanation_of_refinements: Optional[str] = None
|
18 |
raw_content: Optional[str] = None
|
|
|
19 |
|
20 |
class PromptRefiner:
|
21 |
def __init__(self, api_token: str):
|
|
|
42 |
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
|
43 |
]
|
44 |
response = self.client.chat_completion(
|
45 |
+
model=prompt_refiner_model,
|
46 |
messages=messages,
|
47 |
+
max_tokens=2000,
|
48 |
+
temperature=0.8
|
49 |
)
|
50 |
response_content = response.choices[0].message.content.strip()
|
51 |
try:
|
|
|
60 |
for key, value in json_output.items():
|
61 |
if isinstance(value, str):
|
62 |
json_output[key] = value.replace('\\"', '"')
|
|
|
|
|
|
|
|
|
63 |
return RefinementOutput(**json_output, raw_content=response_content)
|
64 |
else:
|
65 |
raise ValueError("No JSON found in the response")
|
|
|
74 |
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
|
75 |
else:
|
76 |
output[key] = ""
|
|
|
|
|
|
|
|
|
77 |
return RefinementOutput(**output, raw_content=response_content)
|
78 |
|
79 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
|
|
119 |
gr.Markdown("### Explanation of Refinements")
|
120 |
explanation_of_refinements = gr.Markdown(label="Explanation of Refinements")
|
121 |
|
|
|
|
|
|
|
|
|
122 |
with gr.Accordion("Full Response JSON", open=False,visible=False):
|
123 |
full_response_json = gr.JSON()
|
124 |
|
125 |
+
|
126 |
refine_button.click(
|
127 |
fn=self.refine_prompt,
|
128 |
inputs=[prompt_text, meta_prompt_choice],
|
129 |
+
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
|
130 |
)
|
131 |
with gr.Row():
|
132 |
apply_model = gr.Dropdown(
|
|
|
181 |
analysis_evaluation,
|
182 |
result.refined_prompt,
|
183 |
result.explanation_of_refinements,
|
184 |
+
result.dict()
|
|
|
185 |
)
|
186 |
|
187 |
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
|