import json import os # Load templates from environment variable with a safe default templates_json = os.getenv('PROMPT_TEMPLATES', '{}') try: # Parse JSON data with error handling prompt_data = json.loads(templates_json) except json.JSONDecodeError: # Fallback to empty dict if JSON is invalid prompt_data = {} #print(prompt_data) # Create explanations dictionary with safe access metaprompt_explanations = { key: data.get("description", "No description available") for key, data in prompt_data.items() } if prompt_data else {} # Generate markdown explanation explanation_markdown = "".join([ f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items() ]) # Define models list models = [ "meta-llama/Meta-Llama-3-70B-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct", "meta-llama/Llama-2-13b-chat-hf", "meta-llama/Llama-2-7b-chat-hf", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-alpha", "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-1.5B", "microsoft/Phi-3.5-mini-instruct" ] examples=[ ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "done"], ["Tell me about that guy who invented the light bulb", "physics"], ["Explain the universe.", "star"], ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"], ["List American presidents.", "verse"], ["Explain why the experiment failed.", "morphosis"], ["Is nuclear energy good?", "verse"], ["How does a computer work?", "phor"], ["How to make money fast?", "done"], ["how can you prove IT0's lemma in stochastic calculus ?", "arpe"], ] # Get API token with error handling api_token = os.getenv('HF_API_TOKEN') if not api_token: raise ValueError("HF_API_TOKEN not found in environment variables") # Create meta_prompts dictionary with safe access meta_prompts = { key: data.get("template", "No template available") for key, data in prompt_data.items() } if prompt_data else {} prompt_refiner_model = os.getenv('PROMPT_REFINER_MODEL', 'meta-llama/Llama-3.1-8B-Instruct') #prompt_refiner_model = os.getenv('prompt_refiner_model') echo_prompt_refiner = os.getenv('echo_prompt_refiner') openai_metaprompt = os.getenv('openai_metaprompt') advanced_meta_prompt = os.getenv('advanced_meta_prompt') meta_prompts = { "morphosis": os.getenv('original_meta_prompt'), "verse": os.getenv('new_meta_prompt'), "physics": os.getenv('metaprompt1'), "bolism": os.getenv('loic_metaprompt') , "done": os.getenv('metadone'), "star": echo_prompt_refiner, "math": os.getenv('metamath'), "arpe": os.getenv('autoregressive_metaprompt') }