Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import uuid
|
4 |
+
import numpy as np
|
5 |
+
from datetime import datetime
|
6 |
+
from flask import Flask, request, jsonify, send_from_directory
|
7 |
+
from flask_cors import CORS
|
8 |
+
from werkzeug.utils import secure_filename
|
9 |
+
import google.generativeai as genai
|
10 |
+
from datasets import load_dataset
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
from transformers import pipeline
|
13 |
+
import faiss
|
14 |
+
import markdown
|
15 |
+
|
16 |
+
# Configuration
|
17 |
+
GEMINI_API_KEY = (
|
18 |
+
"AIzaSyBbb8rH6ksakMg_v2W6hvUNzgHDI3lxWk0" # Replace with your actual API key
|
19 |
+
)
|
20 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
21 |
+
|
22 |
+
# Initialize Flask app
|
23 |
+
app = Flask(__name__, static_folder="../frontend", static_url_path="")
|
24 |
+
CORS(app)
|
25 |
+
|
26 |
+
# RAG Model Initialization
|
27 |
+
print("π Initializing RAG System...")
|
28 |
+
|
29 |
+
# Load medical guidelines dataset
|
30 |
+
print("π Loading dataset...")
|
31 |
+
dataset = load_dataset("epfl-llm/guidelines", split="train")
|
32 |
+
TITLE_COL = "title"
|
33 |
+
CONTENT_COL = "clean_text"
|
34 |
+
|
35 |
+
# Initialize models
|
36 |
+
print("π€ Loading AI models...")
|
37 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
38 |
+
qa_pipeline = pipeline(
|
39 |
+
"question-answering", model="distilbert-base-cased-distilled-squad"
|
40 |
+
)
|
41 |
+
|
42 |
+
# Build FAISS index
|
43 |
+
print("π Building FAISS index...")
|
44 |
+
|
45 |
+
|
46 |
+
def embed_text(batch):
|
47 |
+
combined_texts = [
|
48 |
+
f"{title} {content[:200]}"
|
49 |
+
for title, content in zip(batch[TITLE_COL], batch[CONTENT_COL])
|
50 |
+
]
|
51 |
+
return {"embeddings": embedder.encode(combined_texts, show_progress_bar=False)}
|
52 |
+
|
53 |
+
|
54 |
+
dataset = dataset.map(embed_text, batched=True, batch_size=32)
|
55 |
+
dataset.add_faiss_index(column="embeddings")
|
56 |
+
|
57 |
+
|
58 |
+
# Processing Functions
|
59 |
+
def format_response(text):
|
60 |
+
"""Convert Markdown text to HTML for proper frontend display."""
|
61 |
+
return markdown.markdown(text)
|
62 |
+
|
63 |
+
|
64 |
+
def summarize_report(report):
|
65 |
+
"""Generate a clinical summary using QA and Gemini model."""
|
66 |
+
questions = [
|
67 |
+
"Patient's age?",
|
68 |
+
"Patient's gender?",
|
69 |
+
"Current symptoms?",
|
70 |
+
"Medical history?",
|
71 |
+
]
|
72 |
+
|
73 |
+
answers = []
|
74 |
+
for q in questions:
|
75 |
+
result = qa_pipeline(question=q, context=report)
|
76 |
+
answers.append(result["answer"] if result["score"] > 0.1 else "Not specified")
|
77 |
+
|
78 |
+
model = genai.GenerativeModel("gemini-1.5-flash")
|
79 |
+
prompt = f"""Create clinical summary from:
|
80 |
+
- Age: {answers[0]}
|
81 |
+
- Gender: {answers[1]}
|
82 |
+
- Symptoms: {answers[2]}
|
83 |
+
- History: {answers[3]}
|
84 |
+
|
85 |
+
Format: "[Age] [Gender] with [History], presenting with [Symptoms]"
|
86 |
+
Add relevant medical context."""
|
87 |
+
summary = model.generate_content(prompt).text.strip()
|
88 |
+
print(f"Generated Summary: {summary}") # Debugging log
|
89 |
+
return format_response(summary)
|
90 |
+
|
91 |
+
|
92 |
+
def rag_retrieval(query, k=3):
|
93 |
+
"""Retrieve relevant guidelines using FAISS."""
|
94 |
+
query_embedding = embedder.encode([query])
|
95 |
+
scores, examples = dataset.get_nearest_examples("embeddings", query_embedding, k=k)
|
96 |
+
return [
|
97 |
+
{
|
98 |
+
"title": title,
|
99 |
+
"content": content[:1000],
|
100 |
+
"source": examples.get("source", ["N/A"] * len(examples[TITLE_COL]))[i],
|
101 |
+
"score": float(score),
|
102 |
+
}
|
103 |
+
for i, (title, content, score) in enumerate(
|
104 |
+
zip(examples[TITLE_COL], examples[CONTENT_COL], scores)
|
105 |
+
)
|
106 |
+
]
|
107 |
+
|
108 |
+
|
109 |
+
def generate_recommendations(report):
|
110 |
+
"""Generate treatment recommendations with RAG context."""
|
111 |
+
guidelines = rag_retrieval(report)
|
112 |
+
context = "Relevant Clinical Guidelines:\n" + "\n".join(
|
113 |
+
[f"β’ {g['title']}: {g['content']} [Source: {g['source']}]" for g in guidelines]
|
114 |
+
)
|
115 |
+
|
116 |
+
model = genai.GenerativeModel("gemini-1.5-flash")
|
117 |
+
prompt = f"""Generate treatment recommendations using these guidelines:
|
118 |
+
{context}
|
119 |
+
|
120 |
+
Patient Presentation:
|
121 |
+
{report}
|
122 |
+
|
123 |
+
Format with:
|
124 |
+
- Bold section headers
|
125 |
+
- Clear bullet points
|
126 |
+
- Evidence markers [Guideline #]
|
127 |
+
- Risk-benefit analysis
|
128 |
+
- Include references to the sources provided where applicable
|
129 |
+
"""
|
130 |
+
recommendations = model.generate_content(prompt).text.strip()
|
131 |
+
references = [g["source"] for g in guidelines if g["source"] != "N/A"]
|
132 |
+
return format_response(recommendations), references
|
133 |
+
|
134 |
+
|
135 |
+
def generate_risk_assessment(summary):
|
136 |
+
"""Generate risk assessment using the summary."""
|
137 |
+
model = genai.GenerativeModel("gemini-1.5-flash")
|
138 |
+
prompt = f"""Analyze clinical risk:
|
139 |
+
{summary}
|
140 |
+
|
141 |
+
Output format:
|
142 |
+
Risk Score: 0-100
|
143 |
+
Alert Level: π΄ High/π‘ Medium/π’ Low
|
144 |
+
Key Risk Factors: bullet points
|
145 |
+
Recommended Actions: bullet points"""
|
146 |
+
return format_response(model.generate_content(prompt).text.strip())
|
147 |
+
|
148 |
+
|
149 |
+
# Flask Endpoints
|
150 |
+
@app.route("/upload-txt", methods=["POST"])
|
151 |
+
def handle_upload():
|
152 |
+
"""Handle text file upload and return processed data."""
|
153 |
+
if "file" not in request.files:
|
154 |
+
return jsonify({"error": "No file provided"}), 400
|
155 |
+
|
156 |
+
file = request.files["file"]
|
157 |
+
if not file or not file.filename.endswith(".txt"):
|
158 |
+
return jsonify({"error": "Invalid file, must be a .txt file"}), 400
|
159 |
+
|
160 |
+
try:
|
161 |
+
content = file.read().decode("utf-8")
|
162 |
+
if not content.strip():
|
163 |
+
return jsonify({"error": "File is empty"}), 400
|
164 |
+
|
165 |
+
summary = summarize_report(content)
|
166 |
+
recommendations, references = generate_recommendations(content)
|
167 |
+
risk_assessment = generate_risk_assessment(summary)
|
168 |
+
|
169 |
+
response = {
|
170 |
+
"session_id": str(uuid.uuid4()),
|
171 |
+
"timestamp": datetime.now().isoformat(),
|
172 |
+
"summary": summary,
|
173 |
+
"recommendations": recommendations,
|
174 |
+
"risk_assessment": risk_assessment,
|
175 |
+
"references": references,
|
176 |
+
}
|
177 |
+
print(
|
178 |
+
f"Response Sent to Frontend: {json.dumps(response, indent=2)}"
|
179 |
+
) # Debugging log
|
180 |
+
return jsonify(response)
|
181 |
+
except Exception as e:
|
182 |
+
return jsonify({"error": f"Processing failed: {str(e)}"}), 500
|
183 |
+
|
184 |
+
|
185 |
+
@app.route("/")
|
186 |
+
def serve_index():
|
187 |
+
"""Serve the index.html file."""
|
188 |
+
return send_from_directory(app.static_folder, "index.html")
|
189 |
+
|
190 |
+
|
191 |
+
@app.route("/<path:path>")
|
192 |
+
def serve_static(path):
|
193 |
+
"""Serve other static files from the frontend directory."""
|
194 |
+
return send_from_directory(app.static_folder, path)
|
195 |
+
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
app.run(host="0.0.0.0", port=5000, debug=True)
|