File size: 1,220 Bytes
ae29df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."


def bert_embeddings(text):
    # text = "Replace me by any text you'd like."
    encoded_input = tokenizer(text, return_tensors="pt")
    output = model(**encoded_input)
    return output


from transformers import RobertaTokenizer, RobertaModel

tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = RobertaModel.from_pretrained("roberta-base")
text = "Replace me by any text you'd like."


def Roberta_embeddings(text):
    # text = "Replace me by any text you'd like."
    encoded_input = tokenizer(text, return_tensors="pt")
    output = model(**encoded_input)
    return output


from transformers import BartTokenizer, BartModel

tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
model = BartModel.from_pretrained("facebook/bart-base")
text = "Replace me by any text you'd like."


def bart_embeddings(text):
    # text = "Replace me by any text you'd like."
    encoded_input = tokenizer(text, return_tensors="pt")
    output = model(**encoded_input)
    return output