Spaces:
Paused
Paused
File size: 1,220 Bytes
ae29df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
def bert_embeddings(text):
# text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors="pt")
output = model(**encoded_input)
return output
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = RobertaModel.from_pretrained("roberta-base")
text = "Replace me by any text you'd like."
def Roberta_embeddings(text):
# text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors="pt")
output = model(**encoded_input)
return output
from transformers import BartTokenizer, BartModel
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
model = BartModel.from_pretrained("facebook/bart-base")
text = "Replace me by any text you'd like."
def bart_embeddings(text):
# text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors="pt")
output = model(**encoded_input)
return output
|