File size: 661 Bytes
ae29df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np


def assign_learning_rate(optimizer, new_lr):
    for param_group in optimizer.param_groups:
        param_group["lr"] = new_lr


def _warmup_lr(base_lr, warmup_length, step):
    return base_lr * (step + 1) / warmup_length


def cosine_lr(optimizer, base_lr, warmup_length, steps):
    def _lr_adjuster(step):
        if step < warmup_length:
            lr = _warmup_lr(base_lr, warmup_length, step)
        else:
            e = step - warmup_length
            es = steps - warmup_length
            lr = 0.5 * (1 + np.cos(np.pi * e / es)) * base_lr
        assign_learning_rate(optimizer, lr)
        return lr

    return _lr_adjuster