Spaces:
Paused
Paused
import torch.nn as nn | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
import math | |
from torchlibrosa.stft import magphase | |
def init_layer(layer): | |
"""Initialize a Linear or Convolutional layer. """ | |
nn.init.xavier_uniform_(layer.weight) | |
if hasattr(layer, "bias"): | |
if layer.bias is not None: | |
layer.bias.data.fill_(0.0) | |
def init_bn(bn): | |
"""Initialize a Batchnorm layer. """ | |
bn.bias.data.fill_(0.0) | |
bn.weight.data.fill_(1.0) | |
def init_embedding(layer): | |
"""Initialize a Linear or Convolutional layer. """ | |
nn.init.uniform_(layer.weight, -1., 1.) | |
if hasattr(layer, 'bias'): | |
if layer.bias is not None: | |
layer.bias.data.fill_(0.) | |
def init_gru(rnn): | |
"""Initialize a GRU layer. """ | |
def _concat_init(tensor, init_funcs): | |
(length, fan_out) = tensor.shape | |
fan_in = length // len(init_funcs) | |
for (i, init_func) in enumerate(init_funcs): | |
init_func(tensor[i * fan_in : (i + 1) * fan_in, :]) | |
def _inner_uniform(tensor): | |
fan_in = nn.init._calculate_correct_fan(tensor, "fan_in") | |
nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in)) | |
for i in range(rnn.num_layers): | |
_concat_init( | |
getattr(rnn, "weight_ih_l{}".format(i)), | |
[_inner_uniform, _inner_uniform, _inner_uniform], | |
) | |
torch.nn.init.constant_(getattr(rnn, "bias_ih_l{}".format(i)), 0) | |
_concat_init( | |
getattr(rnn, "weight_hh_l{}".format(i)), | |
[_inner_uniform, _inner_uniform, nn.init.orthogonal_], | |
) | |
torch.nn.init.constant_(getattr(rnn, "bias_hh_l{}".format(i)), 0) | |
def act(x, activation): | |
if activation == "relu": | |
return F.relu_(x) | |
elif activation == "leaky_relu": | |
return F.leaky_relu_(x, negative_slope=0.01) | |
elif activation == "swish": | |
return x * torch.sigmoid(x) | |
else: | |
raise Exception("Incorrect activation!") | |
class Base: | |
def __init__(self): | |
pass | |
def spectrogram(self, input, eps=0.): | |
(real, imag) = self.stft(input) | |
return torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5 | |
def spectrogram_phase(self, input, eps=0.): | |
(real, imag) = self.stft(input) | |
mag = torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5 | |
cos = real / mag | |
sin = imag / mag | |
return mag, cos, sin | |
def wav_to_spectrogram_phase(self, input, eps=1e-10): | |
"""Waveform to spectrogram. | |
Args: | |
input: (batch_size, segment_samples, channels_num) | |
Outputs: | |
output: (batch_size, channels_num, time_steps, freq_bins) | |
""" | |
sp_list = [] | |
cos_list = [] | |
sin_list = [] | |
channels_num = input.shape[1] | |
for channel in range(channels_num): | |
mag, cos, sin = self.spectrogram_phase(input[:, channel, :], eps=eps) | |
sp_list.append(mag) | |
cos_list.append(cos) | |
sin_list.append(sin) | |
sps = torch.cat(sp_list, dim=1) | |
coss = torch.cat(cos_list, dim=1) | |
sins = torch.cat(sin_list, dim=1) | |
return sps, coss, sins | |
def wav_to_spectrogram(self, input, eps=0.): | |
"""Waveform to spectrogram. | |
Args: | |
input: (batch_size, segment_samples, channels_num) | |
Outputs: | |
output: (batch_size, channels_num, time_steps, freq_bins) | |
""" | |
sp_list = [] | |
channels_num = input.shape[1] | |
for channel in range(channels_num): | |
sp_list.append(self.spectrogram(input[:, channel, :], eps=eps)) | |
output = torch.cat(sp_list, dim=1) | |
return output | |
def spectrogram_to_wav(self, input, spectrogram, length=None): | |
"""Spectrogram to waveform. | |
Args: | |
input: (batch_size, segment_samples, channels_num) | |
spectrogram: (batch_size, channels_num, time_steps, freq_bins) | |
Outputs: | |
output: (batch_size, segment_samples, channels_num) | |
""" | |
channels_num = input.shape[1] | |
wav_list = [] | |
for channel in range(channels_num): | |
(real, imag) = self.stft(input[:, channel, :]) | |
(_, cos, sin) = magphase(real, imag) | |
wav_list.append(self.istft(spectrogram[:, channel : channel + 1, :, :] * cos, | |
spectrogram[:, channel : channel + 1, :, :] * sin, length)) | |
output = torch.stack(wav_list, dim=1) | |
return output | |