AudioSep / models /resunet.py
badayvedat's picture
Initial commit
ae29df4
raw
history blame
21 kB
import numpy as np
from typing import Dict, List, NoReturn, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchlibrosa.stft import STFT, ISTFT, magphase
from models.base import Base, init_layer, init_bn, act
class FiLM(nn.Module):
def __init__(self, film_meta, condition_size):
super(FiLM, self).__init__()
self.condition_size = condition_size
self.modules, _ = self.create_film_modules(
film_meta=film_meta,
ancestor_names=[],
)
def create_film_modules(self, film_meta, ancestor_names):
modules = {}
# Pre-order traversal of modules
for module_name, value in film_meta.items():
if isinstance(value, int):
ancestor_names.append(module_name)
unique_module_name = '->'.join(ancestor_names)
modules[module_name] = self.add_film_layer_to_module(
num_features=value,
unique_module_name=unique_module_name,
)
elif isinstance(value, dict):
ancestor_names.append(module_name)
modules[module_name], _ = self.create_film_modules(
film_meta=value,
ancestor_names=ancestor_names,
)
ancestor_names.pop()
return modules, ancestor_names
def add_film_layer_to_module(self, num_features, unique_module_name):
layer = nn.Linear(self.condition_size, num_features)
init_layer(layer)
self.add_module(name=unique_module_name, module=layer)
return layer
def forward(self, conditions):
film_dict = self.calculate_film_data(
conditions=conditions,
modules=self.modules,
)
return film_dict
def calculate_film_data(self, conditions, modules):
film_data = {}
# Pre-order traversal of modules
for module_name, module in modules.items():
if isinstance(module, nn.Module):
film_data[module_name] = module(conditions)[:, :, None, None]
elif isinstance(module, dict):
film_data[module_name] = self.calculate_film_data(conditions, module)
return film_data
class ConvBlockRes(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple,
momentum: float,
has_film,
):
r"""Residual block."""
super(ConvBlockRes, self).__init__()
padding = [kernel_size[0] // 2, kernel_size[1] // 2]
self.bn1 = nn.BatchNorm2d(in_channels, momentum=momentum)
self.bn2 = nn.BatchNorm2d(out_channels, momentum=momentum)
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=(1, 1),
dilation=(1, 1),
padding=padding,
bias=False,
)
self.conv2 = nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=(1, 1),
dilation=(1, 1),
padding=padding,
bias=False,
)
if in_channels != out_channels:
self.shortcut = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
)
self.is_shortcut = True
else:
self.is_shortcut = False
self.has_film = has_film
self.init_weights()
def init_weights(self) -> NoReturn:
r"""Initialize weights."""
init_bn(self.bn1)
init_bn(self.bn2)
init_layer(self.conv1)
init_layer(self.conv2)
if self.is_shortcut:
init_layer(self.shortcut)
def forward(self, input_tensor: torch.Tensor, film_dict: Dict) -> torch.Tensor:
r"""Forward data into the module.
Args:
input_tensor: (batch_size, input_feature_maps, time_steps, freq_bins)
Returns:
output_tensor: (batch_size, output_feature_maps, time_steps, freq_bins)
"""
b1 = film_dict['beta1']
b2 = film_dict['beta2']
x = self.conv1(F.leaky_relu_(self.bn1(input_tensor) + b1, negative_slope=0.01))
x = self.conv2(F.leaky_relu_(self.bn2(x) + b2, negative_slope=0.01))
if self.is_shortcut:
return self.shortcut(input_tensor) + x
else:
return input_tensor + x
class EncoderBlockRes1B(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple,
downsample: Tuple,
momentum: float,
has_film,
):
r"""Encoder block, contains 8 convolutional layers."""
super(EncoderBlockRes1B, self).__init__()
self.conv_block1 = ConvBlockRes(
in_channels, out_channels, kernel_size, momentum, has_film,
)
self.downsample = downsample
def forward(self, input_tensor: torch.Tensor, film_dict: Dict) -> torch.Tensor:
r"""Forward data into the module.
Args:
input_tensor: (batch_size, input_feature_maps, time_steps, freq_bins)
Returns:
encoder_pool: (batch_size, output_feature_maps, downsampled_time_steps, downsampled_freq_bins)
encoder: (batch_size, output_feature_maps, time_steps, freq_bins)
"""
encoder = self.conv_block1(input_tensor, film_dict['conv_block1'])
encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample)
return encoder_pool, encoder
class DecoderBlockRes1B(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple,
upsample: Tuple,
momentum: float,
has_film,
):
r"""Decoder block, contains 1 transposed convolutional and 8 convolutional layers."""
super(DecoderBlockRes1B, self).__init__()
self.kernel_size = kernel_size
self.stride = upsample
self.conv1 = torch.nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=self.stride,
stride=self.stride,
padding=(0, 0),
bias=False,
dilation=(1, 1),
)
self.bn1 = nn.BatchNorm2d(in_channels, momentum=momentum)
self.conv_block2 = ConvBlockRes(
out_channels * 2, out_channels, kernel_size, momentum, has_film,
)
self.bn2 = nn.BatchNorm2d(in_channels, momentum=momentum)
self.has_film = has_film
self.init_weights()
def init_weights(self):
r"""Initialize weights."""
init_bn(self.bn1)
init_layer(self.conv1)
def forward(
self, input_tensor: torch.Tensor, concat_tensor: torch.Tensor, film_dict: Dict,
) -> torch.Tensor:
r"""Forward data into the module.
Args:
input_tensor: (batch_size, input_feature_maps, downsampled_time_steps, downsampled_freq_bins)
concat_tensor: (batch_size, input_feature_maps, time_steps, freq_bins)
Returns:
output_tensor: (batch_size, output_feature_maps, time_steps, freq_bins)
"""
# b1 = film_dict['beta1']
b1 = film_dict['beta1']
x = self.conv1(F.leaky_relu_(self.bn1(input_tensor) + b1))
# (batch_size, input_feature_maps, time_steps, freq_bins)
x = torch.cat((x, concat_tensor), dim=1)
# (batch_size, input_feature_maps * 2, time_steps, freq_bins)
x = self.conv_block2(x, film_dict['conv_block2'])
# output_tensor: (batch_size, output_feature_maps, time_steps, freq_bins)
return x
class ResUNet30_Base(nn.Module, Base):
def __init__(self, input_channels, output_channels):
super(ResUNet30_Base, self).__init__()
window_size = 2048
hop_size = 320
center = True
pad_mode = "reflect"
window = "hann"
momentum = 0.01
self.output_channels = output_channels
self.target_sources_num = 1
self.K = 3
self.time_downsample_ratio = 2 ** 5 # This number equals 2^{#encoder_blcoks}
self.stft = STFT(
n_fft=window_size,
hop_length=hop_size,
win_length=window_size,
window=window,
center=center,
pad_mode=pad_mode,
freeze_parameters=True,
)
self.istft = ISTFT(
n_fft=window_size,
hop_length=hop_size,
win_length=window_size,
window=window,
center=center,
pad_mode=pad_mode,
freeze_parameters=True,
)
self.bn0 = nn.BatchNorm2d(window_size // 2 + 1, momentum=momentum)
self.pre_conv = nn.Conv2d(
in_channels=input_channels,
out_channels=32,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=True,
)
self.encoder_block1 = EncoderBlockRes1B(
in_channels=32,
out_channels=32,
kernel_size=(3, 3),
downsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.encoder_block2 = EncoderBlockRes1B(
in_channels=32,
out_channels=64,
kernel_size=(3, 3),
downsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.encoder_block3 = EncoderBlockRes1B(
in_channels=64,
out_channels=128,
kernel_size=(3, 3),
downsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.encoder_block4 = EncoderBlockRes1B(
in_channels=128,
out_channels=256,
kernel_size=(3, 3),
downsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.encoder_block5 = EncoderBlockRes1B(
in_channels=256,
out_channels=384,
kernel_size=(3, 3),
downsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.encoder_block6 = EncoderBlockRes1B(
in_channels=384,
out_channels=384,
kernel_size=(3, 3),
downsample=(1, 2),
momentum=momentum,
has_film=True,
)
self.conv_block7a = EncoderBlockRes1B(
in_channels=384,
out_channels=384,
kernel_size=(3, 3),
downsample=(1, 1),
momentum=momentum,
has_film=True,
)
self.decoder_block1 = DecoderBlockRes1B(
in_channels=384,
out_channels=384,
kernel_size=(3, 3),
upsample=(1, 2),
momentum=momentum,
has_film=True,
)
self.decoder_block2 = DecoderBlockRes1B(
in_channels=384,
out_channels=384,
kernel_size=(3, 3),
upsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.decoder_block3 = DecoderBlockRes1B(
in_channels=384,
out_channels=256,
kernel_size=(3, 3),
upsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.decoder_block4 = DecoderBlockRes1B(
in_channels=256,
out_channels=128,
kernel_size=(3, 3),
upsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.decoder_block5 = DecoderBlockRes1B(
in_channels=128,
out_channels=64,
kernel_size=(3, 3),
upsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.decoder_block6 = DecoderBlockRes1B(
in_channels=64,
out_channels=32,
kernel_size=(3, 3),
upsample=(2, 2),
momentum=momentum,
has_film=True,
)
self.after_conv = nn.Conv2d(
in_channels=32,
out_channels=output_channels * self.K,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=True,
)
self.init_weights()
def init_weights(self):
init_bn(self.bn0)
init_layer(self.pre_conv)
init_layer(self.after_conv)
def feature_maps_to_wav(
self,
input_tensor: torch.Tensor,
sp: torch.Tensor,
sin_in: torch.Tensor,
cos_in: torch.Tensor,
audio_length: int,
) -> torch.Tensor:
r"""Convert feature maps to waveform.
Args:
input_tensor: (batch_size, target_sources_num * output_channels * self.K, time_steps, freq_bins)
sp: (batch_size, input_channels, time_steps, freq_bins)
sin_in: (batch_size, input_channels, time_steps, freq_bins)
cos_in: (batch_size, input_channels, time_steps, freq_bins)
(There is input_channels == output_channels for the source separation task.)
Outputs:
waveform: (batch_size, target_sources_num * output_channels, segment_samples)
"""
batch_size, _, time_steps, freq_bins = input_tensor.shape
x = input_tensor.reshape(
batch_size,
self.target_sources_num,
self.output_channels,
self.K,
time_steps,
freq_bins,
)
# x: (batch_size, target_sources_num, output_channels, self.K, time_steps, freq_bins)
mask_mag = torch.sigmoid(x[:, :, :, 0, :, :])
_mask_real = torch.tanh(x[:, :, :, 1, :, :])
_mask_imag = torch.tanh(x[:, :, :, 2, :, :])
# linear_mag = torch.tanh(x[:, :, :, 3, :, :])
_, mask_cos, mask_sin = magphase(_mask_real, _mask_imag)
# mask_cos, mask_sin: (batch_size, target_sources_num, output_channels, time_steps, freq_bins)
# Y = |Y|cos∠Y + j|Y|sin∠Y
# = |Y|cos(∠X + ∠M) + j|Y|sin(∠X + ∠M)
# = |Y|(cos∠X cos∠M - sin∠X sin∠M) + j|Y|(sin∠X cos∠M + cos∠X sin∠M)
out_cos = (
cos_in[:, None, :, :, :] * mask_cos - sin_in[:, None, :, :, :] * mask_sin
)
out_sin = (
sin_in[:, None, :, :, :] * mask_cos + cos_in[:, None, :, :, :] * mask_sin
)
# out_cos: (batch_size, target_sources_num, output_channels, time_steps, freq_bins)
# out_sin: (batch_size, target_sources_num, output_channels, time_steps, freq_bins)
# Calculate |Y|.
out_mag = F.relu_(sp[:, None, :, :, :] * mask_mag)
# out_mag = F.relu_(sp[:, None, :, :, :] * mask_mag + linear_mag)
# out_mag: (batch_size, target_sources_num, output_channels, time_steps, freq_bins)
# Calculate Y_{real} and Y_{imag} for ISTFT.
out_real = out_mag * out_cos
out_imag = out_mag * out_sin
# out_real, out_imag: (batch_size, target_sources_num, output_channels, time_steps, freq_bins)
# Reformat shape to (N, 1, time_steps, freq_bins) for ISTFT where
# N = batch_size * target_sources_num * output_channels
shape = (
batch_size * self.target_sources_num * self.output_channels,
1,
time_steps,
freq_bins,
)
out_real = out_real.reshape(shape)
out_imag = out_imag.reshape(shape)
# ISTFT.
x = self.istft(out_real, out_imag, audio_length)
# (batch_size * target_sources_num * output_channels, segments_num)
# Reshape.
waveform = x.reshape(
batch_size, self.target_sources_num * self.output_channels, audio_length
)
# (batch_size, target_sources_num * output_channels, segments_num)
return waveform
def forward(self, mixtures, film_dict):
"""
Args:
input: (batch_size, segment_samples, channels_num)
Outputs:
output_dict: {
'wav': (batch_size, segment_samples, channels_num),
'sp': (batch_size, channels_num, time_steps, freq_bins)}
"""
mag, cos_in, sin_in = self.wav_to_spectrogram_phase(mixtures)
x = mag
# Batch normalization
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
"""(batch_size, chanenls, time_steps, freq_bins)"""
# Pad spectrogram to be evenly divided by downsample ratio.
origin_len = x.shape[2]
pad_len = (
int(np.ceil(x.shape[2] / self.time_downsample_ratio)) * self.time_downsample_ratio
- origin_len
)
x = F.pad(x, pad=(0, 0, 0, pad_len))
"""(batch_size, channels, padded_time_steps, freq_bins)"""
# Let frequency bins be evenly divided by 2, e.g., 513 -> 512
x = x[..., 0 : x.shape[-1] - 1] # (bs, channels, T, F)
# UNet
x = self.pre_conv(x)
x1_pool, x1 = self.encoder_block1(x, film_dict['encoder_block1']) # x1_pool: (bs, 32, T / 2, F / 2)
x2_pool, x2 = self.encoder_block2(x1_pool, film_dict['encoder_block2']) # x2_pool: (bs, 64, T / 4, F / 4)
x3_pool, x3 = self.encoder_block3(x2_pool, film_dict['encoder_block3']) # x3_pool: (bs, 128, T / 8, F / 8)
x4_pool, x4 = self.encoder_block4(x3_pool, film_dict['encoder_block4']) # x4_pool: (bs, 256, T / 16, F / 16)
x5_pool, x5 = self.encoder_block5(x4_pool, film_dict['encoder_block5']) # x5_pool: (bs, 384, T / 32, F / 32)
x6_pool, x6 = self.encoder_block6(x5_pool, film_dict['encoder_block6']) # x6_pool: (bs, 384, T / 32, F / 64)
x_center, _ = self.conv_block7a(x6_pool, film_dict['conv_block7a']) # (bs, 384, T / 32, F / 64)
x7 = self.decoder_block1(x_center, x6, film_dict['decoder_block1']) # (bs, 384, T / 32, F / 32)
x8 = self.decoder_block2(x7, x5, film_dict['decoder_block2']) # (bs, 384, T / 16, F / 16)
x9 = self.decoder_block3(x8, x4, film_dict['decoder_block3']) # (bs, 256, T / 8, F / 8)
x10 = self.decoder_block4(x9, x3, film_dict['decoder_block4']) # (bs, 128, T / 4, F / 4)
x11 = self.decoder_block5(x10, x2, film_dict['decoder_block5']) # (bs, 64, T / 2, F / 2)
x12 = self.decoder_block6(x11, x1, film_dict['decoder_block6']) # (bs, 32, T, F)
x = self.after_conv(x12)
# Recover shape
x = F.pad(x, pad=(0, 1))
x = x[:, :, 0:origin_len, :]
audio_length = mixtures.shape[2]
# Recover each subband spectrograms to subband waveforms. Then synthesis
# the subband waveforms to a waveform.
separated_audio = self.feature_maps_to_wav(
input_tensor=x,
# input_tensor: (batch_size, target_sources_num * output_channels * self.K, T, F')
sp=mag,
# sp: (batch_size, input_channels, T, F')
sin_in=sin_in,
# sin_in: (batch_size, input_channels, T, F')
cos_in=cos_in,
# cos_in: (batch_size, input_channels, T, F')
audio_length=audio_length,
)
# (batch_size, target_sources_num * output_channels, subbands_num, segment_samples)
output_dict = {'waveform': separated_audio}
return output_dict
def get_film_meta(module):
film_meta = {}
if hasattr(module, 'has_film'):\
if module.has_film:
film_meta['beta1'] = module.bn1.num_features
film_meta['beta2'] = module.bn2.num_features
else:
film_meta['beta1'] = 0
film_meta['beta2'] = 0
for child_name, child_module in module.named_children():
child_meta = get_film_meta(child_module)
if len(child_meta) > 0:
film_meta[child_name] = child_meta
return film_meta
class ResUNet30(nn.Module):
def __init__(self, input_channels, output_channels, condition_size):
super(ResUNet30, self).__init__()
self.base = ResUNet30_Base(
input_channels=input_channels,
output_channels=output_channels,
)
self.film_meta = get_film_meta(
module=self.base,
)
self.film = FiLM(
film_meta=self.film_meta,
condition_size=condition_size
)
def forward(self, input_dict):
mixtures = input_dict['mixture']
conditions = input_dict['condition']
film_dict = self.film(
conditions=conditions,
)
output_dict = self.base(
mixtures=mixtures,
film_dict=film_dict,
)
return output_dict