AudioSep / train.py
badayvedat's picture
Initial commit
ae29df4
import argparse
import logging
import os
import pathlib
from typing import List, NoReturn
import lightning.pytorch as pl
from lightning.pytorch.strategies import DDPStrategy
from torch.utils.tensorboard import SummaryWriter
from data.datamodules import *
from utils import create_logging, parse_yaml
from models.resunet import *
from losses import get_loss_function
from models.audiosep import AudioSep, get_model_class
from data.waveform_mixers import SegmentMixer
from models.clap_encoder import CLAP_Encoder
from callbacks.base import CheckpointEveryNSteps
from optimizers.lr_schedulers import get_lr_lambda
def get_dirs(
workspace: str,
filename: str,
config_yaml: str,
devices_num: int
) -> List[str]:
r"""Get directories and paths.
Args:
workspace (str): directory of workspace
filename (str): filename of current .py file.
config_yaml (str): config yaml path
devices_num (int): 0 for cpu and 8 for training with 8 GPUs
Returns:
checkpoints_dir (str): directory to save checkpoints
logs_dir (str), directory to save logs
tf_logs_dir (str), directory to save TensorBoard logs
statistics_path (str), directory to save statistics
"""
os.makedirs(workspace, exist_ok=True)
yaml_name = pathlib.Path(config_yaml).stem
# Directory to save checkpoints
checkpoints_dir = os.path.join(
workspace,
"checkpoints",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
os.makedirs(checkpoints_dir, exist_ok=True)
# Directory to save logs
logs_dir = os.path.join(
workspace,
"logs",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
os.makedirs(logs_dir, exist_ok=True)
# Directory to save TensorBoard logs
create_logging(logs_dir, filemode="w")
logging.info(args)
tf_logs_dir = os.path.join(
workspace,
"tf_logs",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
# Directory to save statistics
statistics_path = os.path.join(
workspace,
"statistics",
filename,
"{},devices={}".format(yaml_name, devices_num),
"statistics.pkl",
)
os.makedirs(os.path.dirname(statistics_path), exist_ok=True)
return checkpoints_dir, logs_dir, tf_logs_dir, statistics_path
def get_data_module(
config_yaml: str,
num_workers: int,
batch_size: int,
) -> DataModule:
r"""Create data_module. Mini-batch data can be obtained by:
code-block:: python
data_module.setup()
for batch_data_dict in data_module.train_dataloader():
print(batch_data_dict.keys())
break
Args:
workspace: str
config_yaml: str
num_workers: int, e.g., 0 for non-parallel and 8 for using cpu cores
for preparing data in parallel
distributed: bool
Returns:
data_module: DataModule
"""
# read configurations
configs = parse_yaml(config_yaml)
sampling_rate = configs['data']['sampling_rate']
segment_seconds = configs['data']['segment_seconds']
# audio-text datasets
datafiles = configs['data']['datafiles']
# dataset
dataset = AudioTextDataset(
datafiles=datafiles,
sampling_rate=sampling_rate,
max_clip_len=segment_seconds,
)
# data module
data_module = DataModule(
train_dataset=dataset,
num_workers=num_workers,
batch_size=batch_size
)
return data_module
def train(args) -> NoReturn:
r"""Train, evaluate, and save checkpoints.
Args:
workspace: str, directory of workspace
gpus: int, number of GPUs to train
config_yaml: str
"""
# arguments & parameters
workspace = args.workspace
config_yaml = args.config_yaml
filename = args.filename
devices_num = torch.cuda.device_count()
# Read config file.
configs = parse_yaml(config_yaml)
# Configuration of data
max_mix_num = configs['data']['max_mix_num']
sampling_rate = configs['data']['sampling_rate']
lower_db = configs['data']['loudness_norm']['lower_db']
higher_db = configs['data']['loudness_norm']['higher_db']
# Configuration of the separation model
query_net = configs['model']['query_net']
model_type = configs['model']['model_type']
input_channels = configs['model']['input_channels']
output_channels = configs['model']['output_channels']
condition_size = configs['model']['condition_size']
use_text_ratio = configs['model']['use_text_ratio']
# Configuration of the trainer
num_nodes = configs['train']['num_nodes']
batch_size = configs['train']['batch_size_per_device']
sync_batchnorm = configs['train']['sync_batchnorm']
num_workers = configs['train']['num_workers']
loss_type = configs['train']['loss_type']
optimizer_type = configs["train"]["optimizer"]["optimizer_type"]
learning_rate = float(configs['train']["optimizer"]['learning_rate'])
lr_lambda_type = configs['train']["optimizer"]['lr_lambda_type']
warm_up_steps = configs['train']["optimizer"]['warm_up_steps']
reduce_lr_steps = configs['train']["optimizer"]['reduce_lr_steps']
save_step_frequency = configs['train']['save_step_frequency']
resume_checkpoint_path = args.resume_checkpoint_path
if resume_checkpoint_path == "":
resume_checkpoint_path = None
else:
logging.info(f'Finetuning AudioSep with checkpoint [{resume_checkpoint_path}]')
# Get directories and paths
checkpoints_dir, logs_dir, tf_logs_dir, statistics_path = get_dirs(
workspace, filename, config_yaml, devices_num,
)
logging.info(configs)
# data module
data_module = get_data_module(
config_yaml=config_yaml,
batch_size=batch_size,
num_workers=num_workers,
)
# model
Model = get_model_class(model_type=model_type)
ss_model = Model(
input_channels=input_channels,
output_channels=output_channels,
condition_size=condition_size,
)
# loss function
loss_function = get_loss_function(loss_type)
segment_mixer = SegmentMixer(
max_mix_num=max_mix_num,
lower_db=lower_db,
higher_db=higher_db
)
if query_net == 'CLAP':
query_encoder = CLAP_Encoder()
else:
raise NotImplementedError
lr_lambda_func = get_lr_lambda(
lr_lambda_type=lr_lambda_type,
warm_up_steps=warm_up_steps,
reduce_lr_steps=reduce_lr_steps,
)
# pytorch-lightning model
pl_model = AudioSep(
ss_model=ss_model,
waveform_mixer=segment_mixer,
query_encoder=query_encoder,
loss_function=loss_function,
optimizer_type=optimizer_type,
learning_rate=learning_rate,
lr_lambda_func=lr_lambda_func,
use_text_ratio=use_text_ratio
)
checkpoint_every_n_steps = CheckpointEveryNSteps(
checkpoints_dir=checkpoints_dir,
save_step_frequency=save_step_frequency,
)
summary_writer = SummaryWriter(log_dir=tf_logs_dir)
callbacks = [checkpoint_every_n_steps]
trainer = pl.Trainer(
accelerator='auto',
devices='auto',
strategy='ddp_find_unused_parameters_true',
num_nodes=num_nodes,
precision="32-true",
logger=None,
callbacks=callbacks,
fast_dev_run=False,
max_epochs=-1,
log_every_n_steps=50,
use_distributed_sampler=True,
sync_batchnorm=sync_batchnorm,
num_sanity_val_steps=2,
enable_checkpointing=False,
enable_progress_bar=True,
enable_model_summary=True,
)
# Fit, evaluate, and save checkpoints.
trainer.fit(
model=pl_model,
train_dataloaders=None,
val_dataloaders=None,
datamodule=data_module,
ckpt_path=resume_checkpoint_path,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--workspace", type=str, required=True, help="Directory of workspace."
)
parser.add_argument(
"--config_yaml",
type=str,
required=True,
help="Path of config file for training.",
)
parser.add_argument(
"--resume_checkpoint_path",
type=str,
required=True,
default='',
help="Path of pretrained checkpoint for finetuning.",
)
args = parser.parse_args()
args.filename = pathlib.Path(__file__).stem
train(args)