from pathlib import Path from threading import Thread import gdown import gradio as gr import librosa import numpy as np import torch from pipeline import build_audiosep CHECKPOINTS_DIR = Path("checkpoint") DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # The model will be loaded in the future MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt" MODEL = None description = """ # AudioSep: Separate Anything You Describe [[Project Page]](https://audio-agi.github.io/Separate-Anything-You-Describe) [[Paper]](https://audio-agi.github.io/Separate-Anything-You-Describe/AudioSep_arXiv.pdf) [[Code]](https://github.com/Audio-AGI/AudioSep) AudioSep is a foundation model for open-domain sound separation with natural language queries. AudioSep demonstrates strong separation performance and impressivezero-shot generalization ability on numerous tasks such as audio event separation, musical instrument separation, and speech enhancement. """ def get_model(): model = build_audiosep( config_yaml="config/audiosep_base.yaml", checkpoint_path=MODEL_NAME, device=DEVICE, ) return model def inference(audio_file_path: str, text: str): print(f"Separate audio from [{audio_file_path}] with textual query [{text}]") mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True) with torch.no_grad(): text = [text] conditions = MODEL.query_encoder.get_query_embed( modality="text", text=text, device=DEVICE ) input_dict = { "mixture": torch.Tensor(mixture)[None, None, :].to(DEVICE), "condition": conditions, } sep_segment = MODEL.ss_model(input_dict)["waveform"] sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy() return 32000, np.round(sep_segment * 32767).astype(np.int16) def download_models(): CHECKPOINTS_DIR.mkdir(exist_ok=True) success_file = CHECKPOINTS_DIR / "_SUCCESS" models = ( ( "https://drive.google.com/file/d/1wQuXThdATXrkmkPM2sRGaNapJ4mTqmlY/view?usp=sharing", MODEL_NAME, ), ( "https://drive.google.com/file/d/11oj8_tPG6SXgw5fIEsZ5HiWZnJOrvdhw/view?usp=sharing", CHECKPOINTS_DIR / "music_speech_audioset_epoch_15_esc_89.98.pt", ), ) def download(models): for model_url, model_path in models: gdown.download(model_url, str(model_path), quiet=False, fuzzy=True) success_file.touch() global MODEL MODEL = get_model() button.update(value="Separate", interactive=True) if not success_file.exists(): thread = Thread(target=download, args=[models]) thread.start() with gr.Blocks(title="AudioSep") as demo: gr.Markdown(description) with gr.Row(): with gr.Column(): input_audio = gr.Audio() text = gr.Textbox() with gr.Column(): with gr.Column(): output_audio = gr.Audio(scale=10) button = gr.Button( "Downloading the models...", variant="primary", scale=2, size="lg", interactive=False, ) button.click( fn=inference, inputs=[input_audio, text], outputs=[output_audio] ) download_models() demo.queue().launch(share=True)