from pathlib import Path from threading import Thread import gdown import gradio as gr import librosa import numpy as np import torch from gradio_examples import EXAMPLES from pipeline import build_audiosep CHECKPOINTS_DIR = Path("checkpoint") DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # The model will be loaded in the future MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt" MODEL = build_audiosep( config_yaml="config/audiosep_base.yaml", checkpoint_path=MODEL_NAME, device=DEVICE, ) description = """ # AudioSep: Separate Anything You Describe [[Project Page]](https://audio-agi.github.io/Separate-Anything-You-Describe) [[Paper]](https://audio-agi.github.io/Separate-Anything-You-Describe/AudioSep_arXiv.pdf) [[Code]](https://github.com/Audio-AGI/AudioSep) AudioSep is a foundation model for open-domain sound separation with natural language queries. AudioSep demonstrates strong separation performance and impressivezero-shot generalization ability on numerous tasks such as audio event separation, musical instrument separation, and speech enhancement. """ def inference(audio_file_path: str, text: str): print(f"Separate audio from [{audio_file_path}] with textual query [{text}]") mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True) with torch.no_grad(): text = [text] conditions = MODEL.query_encoder.get_query_embed( modality="text", text=text, device=DEVICE ) input_dict = { "mixture": torch.Tensor(mixture)[None, None, :].to(DEVICE), "condition": conditions, } sep_segment = MODEL.ss_model(input_dict)["waveform"] sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy() return 32000, np.round(sep_segment * 32767).astype(np.int16) with gr.Blocks(title="AudioSep") as demo: gr.Markdown(description) with gr.Row(): with gr.Column(): input_audio = gr.Audio(label="Mixture", type="filepath") text = gr.Textbox(label="Text Query") with gr.Column(): with gr.Column(): output_audio = gr.Audio(label="Separation Result", scale=10) button = gr.Button( "Separate", variant="primary", scale=2, size="lg", interactive=True, ) button.click( fn=inference, inputs=[input_audio, text], outputs=[output_audio] ) gr.Markdown("## Examples") gr.Examples(examples=EXAMPLES, inputs=[input_audio, text]) demo.queue().launch(share=True)