Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error, r2_score | |
from sklearn import datasets | |
import io | |
def main(): | |
st.title("California Housing Analysis") | |
# Load the California housing dataset | |
california = datasets.fetch_california_housing() | |
df = pd.DataFrame(california.data, columns=california.feature_names) | |
df['MedHouseVal'] = california.target | |
# Displaying initial data information | |
st.write("## Data Sample") | |
st.write(df.head()) | |
st.write("## Data Statistics") | |
st.write(df.describe()) | |
st.write("## Data Info") | |
buffer = io.StringIO() | |
df.info(buf=buffer) | |
s = buffer.getvalue() | |
st.text(s) | |
st.write("## Missing Values") | |
st.write(df.isnull().sum()) | |
# Fixed target variable | |
target = 'MedHouseVal' | |
st.write(f"## Target Variable: {target}") | |
# Drop the target from the predictors list | |
predictor_options = df.columns.drop(target).tolist() | |
# Multiselect widget to select predictor variables for regression | |
predictors = st.multiselect( | |
'Select predictor variables for regression:', | |
options=predictor_options, | |
default=predictor_options # default to all predictors for MLR | |
) | |
# Splitting data for regression | |
X = df[predictors] | |
y = df[target] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Perform multilinear regression | |
mlr_model = LinearRegression() | |
mlr_model.fit(X_train, y_train) | |
mlr_y_pred = mlr_model.predict(X_test) | |
mlr_rmse = np.sqrt(mean_squared_error(y_test, mlr_y_pred)) | |
mlr_r2 = r2_score(y_test, mlr_y_pred) | |
# Perform simple linear regression using only one predictor if possible | |
if 'AveRooms' in predictors: | |
slr_model = LinearRegression() | |
slr_X_train = X_train[['AveRooms']] | |
slr_X_test = X_test[['AveRooms']] | |
slr_model.fit(slr_X_train, y_train) | |
slr_y_pred = slr_model.predict(slr_X_test) | |
slr_rmse = np.sqrt(mean_squared_error(y_test, slr_y_pred)) | |
slr_r2 = r2_score(y_test, slr_y_pred) | |
# Display RMSE and R-squared comparisons | |
st.write("## Regression Performance Comparison") | |
st.write(f"### Multilinear Regression (using all selected predictors)") | |
st.write(f'RMSE: {mlr_rmse}') | |
st.write(f'R-squared: {mlr_r2}') | |
st.write(f"### Simple Linear Regression (using 'AveRooms')") | |
st.write(f'RMSE: {slr_rmse}') | |
st.write(f'R-squared: {slr_r2}') | |
# Plotting both regressions | |
fig, ax = plt.subplots(1, 2, figsize=(15, 6)) | |
ax[0].scatter(y_test, mlr_y_pred, color='blue') | |
ax[0].plot(y_test, y_test, color='red') | |
ax[0].set_title('Multilinear Regression: Actual vs Predicted') | |
ax[0].set_xlabel('Actual Values') | |
ax[0].set_ylabel('Predicted Values') | |
ax[1].scatter(y_test, slr_y_pred, color='green') | |
ax[1].plot(y_test, y_test, color='red') | |
ax[1].set_title("Simple Linear Regression ('AveRooms'): Actual vs Predicted") | |
ax[1].set_xlabel('Actual Values') | |
ax[1].set_ylabel('Predicted Values') | |
st.pyplot(fig) | |
if __name__ == "__main__": | |
main() | |