streamlit_badr / app.py
badr-mardi's picture
Update app.py
20469e3 verified
raw
history blame
3.42 kB
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn import datasets
import io
def main():
st.title("California Housing Analysis")
# Load the California housing dataset
california = datasets.fetch_california_housing()
df = pd.DataFrame(california.data, columns=california.feature_names)
df['MedHouseVal'] = california.target
# Displaying initial data information
st.write("## Data Sample")
st.write(df.head())
st.write("## Data Statistics")
st.write(df.describe())
st.write("## Data Info")
buffer = io.StringIO()
df.info(buf=buffer)
s = buffer.getvalue()
st.text(s)
st.write("## Missing Values")
st.write(df.isnull().sum())
# Fixed target variable
target = 'MedHouseVal'
st.write(f"## Target Variable: {target}")
# Drop the target from the predictors list
predictor_options = df.columns.drop(target).tolist()
# Multiselect widget to select predictor variables for regression
predictors = st.multiselect(
'Select predictor variables for regression:',
options=predictor_options,
default=predictor_options # default to all predictors for MLR
)
# Splitting data for regression
X = df[predictors]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Perform multilinear regression
mlr_model = LinearRegression()
mlr_model.fit(X_train, y_train)
mlr_y_pred = mlr_model.predict(X_test)
mlr_rmse = np.sqrt(mean_squared_error(y_test, mlr_y_pred))
mlr_r2 = r2_score(y_test, mlr_y_pred)
# Perform simple linear regression using only one predictor if possible
if 'AveRooms' in predictors:
slr_model = LinearRegression()
slr_X_train = X_train[['AveRooms']]
slr_X_test = X_test[['AveRooms']]
slr_model.fit(slr_X_train, y_train)
slr_y_pred = slr_model.predict(slr_X_test)
slr_rmse = np.sqrt(mean_squared_error(y_test, slr_y_pred))
slr_r2 = r2_score(y_test, slr_y_pred)
# Display RMSE and R-squared comparisons
st.write("## Regression Performance Comparison")
st.write(f"### Multilinear Regression (using all selected predictors)")
st.write(f'RMSE: {mlr_rmse}')
st.write(f'R-squared: {mlr_r2}')
st.write(f"### Simple Linear Regression (using 'AveRooms')")
st.write(f'RMSE: {slr_rmse}')
st.write(f'R-squared: {slr_r2}')
# Plotting both regressions
fig, ax = plt.subplots(1, 2, figsize=(15, 6))
ax[0].scatter(y_test, mlr_y_pred, color='blue')
ax[0].plot(y_test, y_test, color='red')
ax[0].set_title('Multilinear Regression: Actual vs Predicted')
ax[0].set_xlabel('Actual Values')
ax[0].set_ylabel('Predicted Values')
ax[1].scatter(y_test, slr_y_pred, color='green')
ax[1].plot(y_test, y_test, color='red')
ax[1].set_title("Simple Linear Regression ('AveRooms'): Actual vs Predicted")
ax[1].set_xlabel('Actual Values')
ax[1].set_ylabel('Predicted Values')
st.pyplot(fig)
if __name__ == "__main__":
main()