Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,100 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
from sklearn import datasets
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.linear_model import LinearRegression
|
8 |
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
st.
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
df
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
# Afficher l'écart entre le prix réel et le prix prédit pour la régression simple
|
101 |
-
# residuals_single = y_test - y_pred
|
102 |
-
fig, ax = plt.subplots()
|
103 |
-
ax.scatter(X_train, y_train_multi, color='blue', label='Données d\'entraînement')
|
104 |
-
ax.plot(X_train_multi, model.predict(X_train_multi), color='red', linewidth=2, label='Ligne de régression')
|
105 |
-
ax.set_xlabel('Nombre moyen de pièces par logement')
|
106 |
-
ax.set_ylabel('Valeur médiane des maisons')
|
107 |
-
ax.set_title('Ajustement de la régression linéaire sur les données d\'entraînement')
|
108 |
-
ax.legend()
|
109 |
-
st.pyplot(fig)
|
110 |
-
|
111 |
-
# fig, ax = plt.subplots(figsize=(10, 6))
|
112 |
-
# ax.scatter(y_test, residuals_single, c="blue", label="Écarts régression simple")
|
113 |
-
# ax.axhline(0, color='black', linewidth=1)
|
114 |
-
# ax.set_xlabel('Valeur réelle')
|
115 |
-
# ax.set_ylabel('Écarts')
|
116 |
-
# ax.set_title('Écarts entre le prix réel et le prix prédit pour la régression simple')
|
117 |
-
# ax.legend()
|
118 |
-
# st.pyplot(fig)
|
119 |
-
|
120 |
-
# # Afficher l'écart entre le prix réel et le prix prédit pour la régression multiple
|
121 |
-
# residuals_multi = y_test_multi - y_pred_multi
|
122 |
-
|
123 |
-
# fig, ax = plt.subplots(figsize=(10, 6))
|
124 |
-
# ax.scatter(y_test_multi, residuals_multi, c="red", label="Écarts régression multiple")
|
125 |
-
# ax.axhline(0, color='black', linewidth=1)
|
126 |
-
# ax.set_xlabel('Valeur réelle')
|
127 |
-
# ax.set_ylabel('Écarts')
|
128 |
-
# ax.set_title('Écarts entre le prix réel et le prix prédit pour la régression multiple')
|
129 |
-
# ax.legend()
|
130 |
-
# st.pyplot(fig)
|
131 |
-
|
132 |
|
133 |
|
134 |
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
|
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from sklearn.linear_model import LinearRegression
|
7 |
from sklearn.metrics import mean_squared_error, r2_score
|
8 |
+
from sklearn import datasets
|
9 |
+
import io
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("California Housing Analysis")
|
13 |
+
|
14 |
+
california = datasets.fetch_california_housing()
|
15 |
+
df = pd.DataFrame(california.data, columns=california.feature_names)
|
16 |
+
df['MedHouseVal'] = california.target
|
17 |
+
|
18 |
+
st.write("## Data Sample")
|
19 |
+
st.write(df.head())
|
20 |
+
|
21 |
+
st.write("## Data Statistics")
|
22 |
+
st.write(df.describe())
|
23 |
+
|
24 |
+
st.write("## Data Info")
|
25 |
+
buffer = io.StringIO()
|
26 |
+
df.info(buf=buffer)
|
27 |
+
s = buffer.getvalue()
|
28 |
+
st.text(s)
|
29 |
+
|
30 |
+
st.write("## Missing Values")
|
31 |
+
st.write(df.isnull().sum())
|
32 |
+
|
33 |
+
# Fixed target variable
|
34 |
+
target = 'MedHouseVal'
|
35 |
+
st.write(f"## Target Variable: {target}")
|
36 |
+
|
37 |
+
# Drop the target from the predictors list
|
38 |
+
predictor_options = df.columns.drop(target).tolist()
|
39 |
+
|
40 |
+
# Add multiselect for user to choose predictor variables
|
41 |
+
predictors = st.multiselect(
|
42 |
+
'Select predictor variables for regression:',
|
43 |
+
options=predictor_options,
|
44 |
+
default=['AveRooms']
|
45 |
+
)
|
46 |
+
|
47 |
+
if not predictors:
|
48 |
+
st.error("Please select at least one predictor variable.")
|
49 |
+
return
|
50 |
+
|
51 |
+
st.write("## Scatter Plot")
|
52 |
+
if len(predictors) == 1:
|
53 |
+
fig, ax = plt.subplots()
|
54 |
+
ax.scatter(df[predictors[0]], df[target])
|
55 |
+
ax.set_xlabel(predictors[0])
|
56 |
+
ax.set_ylabel(target)
|
57 |
+
ax.set_title(f'Relationship between {predictors[0]} and {target}')
|
58 |
+
st.pyplot(fig)
|
59 |
+
else:
|
60 |
+
st.write("Scatter plot is only available for a single predictor.")
|
61 |
+
|
62 |
+
# Regression analysis
|
63 |
+
X = df[predictors]
|
64 |
+
y = df[target]
|
65 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
66 |
+
model = LinearRegression()
|
67 |
+
model.fit(X_train, y_train)
|
68 |
+
y_pred = model.predict(X_test)
|
69 |
+
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
|
70 |
+
r2 = r2_score(y_test, y_pred)
|
71 |
+
|
72 |
+
st.write(f'## Regression Analysis')
|
73 |
+
st.write(f'RMSE: {rmse}')
|
74 |
+
st.write(f'R-squared: {r2}')
|
75 |
+
|
76 |
+
if len(predictors) == 1:
|
77 |
+
fig, ax = plt.subplots()
|
78 |
+
ax.scatter(X_train, y_train, color='blue', label='Training data')
|
79 |
+
ax.scatter(X_test, y_test, color='green', label='Testing data')
|
80 |
+
ax.plot(X_test, y_pred, color='red', linewidth=2, label='Regression line')
|
81 |
+
ax.set_xlabel(predictors[0])
|
82 |
+
ax.set_ylabel(target)
|
83 |
+
ax.set_title(f'Linear Regression: {predictors[0]} vs {target}')
|
84 |
+
ax.legend()
|
85 |
+
st.pyplot(fig)
|
86 |
+
else:
|
87 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
88 |
+
ax.scatter(y_test, y_pred, color='blue', label='Predicted vs Actual')
|
89 |
+
ax.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2, label='Ideal fit')
|
90 |
+
ax.set_xlabel('Actual ' + target)
|
91 |
+
ax.set_ylabel('Predicted ' + target)
|
92 |
+
ax.set_title('Multilinear Regression: Actual vs Predicted')
|
93 |
+
ax.legend()
|
94 |
+
st.pyplot(fig)
|
95 |
+
|
96 |
+
if _name_ == "_main_":
|
97 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
|