Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
@@ -11,13 +12,15 @@ import io
|
|
11 |
def main():
|
12 |
st.title("California Housing Analysis")
|
13 |
|
|
|
14 |
california = datasets.fetch_california_housing()
|
15 |
df = pd.DataFrame(california.data, columns=california.feature_names)
|
16 |
df['MedHouseVal'] = california.target
|
17 |
|
|
|
18 |
st.write("## Data Sample")
|
19 |
st.write(df.head())
|
20 |
-
|
21 |
st.write("## Data Statistics")
|
22 |
st.write(df.describe())
|
23 |
|
@@ -26,7 +29,7 @@ def main():
|
|
26 |
df.info(buf=buffer)
|
27 |
s = buffer.getvalue()
|
28 |
st.text(s)
|
29 |
-
|
30 |
st.write("## Missing Values")
|
31 |
st.write(df.isnull().sum())
|
32 |
|
@@ -37,7 +40,7 @@ def main():
|
|
37 |
# Drop the target from the predictors list
|
38 |
predictor_options = df.columns.drop(target).tolist()
|
39 |
|
40 |
-
#
|
41 |
predictors = st.multiselect(
|
42 |
'Select predictor variables for regression:',
|
43 |
options=predictor_options,
|
@@ -59,10 +62,12 @@ def main():
|
|
59 |
else:
|
60 |
st.write("Scatter plot is only available for a single predictor.")
|
61 |
|
62 |
-
#
|
63 |
X = df[predictors]
|
64 |
y = df[target]
|
65 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
66 |
model = LinearRegression()
|
67 |
model.fit(X_train, y_train)
|
68 |
y_pred = model.predict(X_test)
|
@@ -73,6 +78,7 @@ def main():
|
|
73 |
st.write(f'RMSE: {rmse}')
|
74 |
st.write(f'R-squared: {r2}')
|
75 |
|
|
|
76 |
if len(predictors) == 1:
|
77 |
fig, ax = plt.subplots()
|
78 |
ax.scatter(X_train, y_train, color='blue', label='Training data')
|
@@ -98,3 +104,4 @@ if __name__ == "__main__":
|
|
98 |
|
99 |
|
100 |
|
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
12 |
def main():
|
13 |
st.title("California Housing Analysis")
|
14 |
|
15 |
+
# Load the California housing dataset
|
16 |
california = datasets.fetch_california_housing()
|
17 |
df = pd.DataFrame(california.data, columns=california.feature_names)
|
18 |
df['MedHouseVal'] = california.target
|
19 |
|
20 |
+
# Displaying initial data information
|
21 |
st.write("## Data Sample")
|
22 |
st.write(df.head())
|
23 |
+
|
24 |
st.write("## Data Statistics")
|
25 |
st.write(df.describe())
|
26 |
|
|
|
29 |
df.info(buf=buffer)
|
30 |
s = buffer.getvalue()
|
31 |
st.text(s)
|
32 |
+
|
33 |
st.write("## Missing Values")
|
34 |
st.write(df.isnull().sum())
|
35 |
|
|
|
40 |
# Drop the target from the predictors list
|
41 |
predictor_options = df.columns.drop(target).tolist()
|
42 |
|
43 |
+
# Multiselect widget to select predictor variables for regression
|
44 |
predictors = st.multiselect(
|
45 |
'Select predictor variables for regression:',
|
46 |
options=predictor_options,
|
|
|
62 |
else:
|
63 |
st.write("Scatter plot is only available for a single predictor.")
|
64 |
|
65 |
+
# Splitting data for regression
|
66 |
X = df[predictors]
|
67 |
y = df[target]
|
68 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
69 |
+
|
70 |
+
# Perform linear regression
|
71 |
model = LinearRegression()
|
72 |
model.fit(X_train, y_train)
|
73 |
y_pred = model.predict(X_test)
|
|
|
78 |
st.write(f'RMSE: {rmse}')
|
79 |
st.write(f'R-squared: {r2}')
|
80 |
|
81 |
+
# Visualizing the regression results
|
82 |
if len(predictors) == 1:
|
83 |
fig, ax = plt.subplots()
|
84 |
ax.scatter(X_train, y_train, color='blue', label='Training data')
|
|
|
104 |
|
105 |
|
106 |
|
107 |
+
|