badr-mardi commited on
Commit
db612bc
·
verified ·
1 Parent(s): 20469e3

Create u_can_use_any_dataset.py

Browse files
Files changed (1) hide show
  1. u_can_use_any_dataset.py +97 -0
u_can_use_any_dataset.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from sklearn.model_selection import train_test_split
6
+ from sklearn.linear_model import LinearRegression
7
+ from sklearn.metrics import mean_squared_error, r2_score
8
+ import io
9
+
10
+ def main():
11
+ st.title("Dynamic Regression Model App")
12
+
13
+ # File uploader for user dataset
14
+ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
15
+
16
+ if uploaded_file is not None:
17
+ df = pd.read_csv(uploaded_file)
18
+ st.write("## Data Sample")
19
+ st.write(df.head())
20
+
21
+ st.write("## Data Statistics")
22
+ st.write(df.describe())
23
+
24
+ st.write("## Data Info")
25
+ buffer = io.StringIO()
26
+ df.info(buf=buffer)
27
+ s = buffer.getvalue()
28
+ st.text(s)
29
+
30
+ st.write("## Missing Values")
31
+ st.write(df.isnull().sum())
32
+
33
+ # Drop target variable from the predictors list
34
+ columns = df.columns.tolist()
35
+ target = st.selectbox('Select the target variable for regression:', options=columns)
36
+
37
+ predictor_options = [col for col in columns if col != target]
38
+
39
+ # Add multiselect for user to choose predictor variables
40
+ predictors = st.multiselect(
41
+ 'Select predictor variables for regression:',
42
+ options=predictor_options
43
+ )
44
+
45
+ if not predictors or not target:
46
+ st.error("Please select at least one predictor and a target variable.")
47
+ return
48
+
49
+ st.write("## Scatter Plot")
50
+ if len(predictors) == 1:
51
+ fig, ax = plt.subplots()
52
+ ax.scatter(df[predictors[0]], df[target])
53
+ ax.set_xlabel(predictors[0])
54
+ ax.set_ylabel(target)
55
+ ax.set_title(f'Relationship between {predictors[0]} and {target}')
56
+ st.pyplot(fig)
57
+ else:
58
+ st.write("Scatter plot is only available for a single predictor.")
59
+
60
+ # Regression analysis
61
+ X = df[predictors]
62
+ y = df[target]
63
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
64
+ model = LinearRegression()
65
+ model.fit(X_train, y_train)
66
+ y_pred = model.predict(X_test)
67
+ rmse = np.sqrt(mean_squared_error(y_test, y_pred))
68
+ r2 = r2_score(y_test, y_pred)
69
+
70
+ st.write(f'## Regression Analysis')
71
+ st.write(f'RMSE: {rmse}')
72
+ st.write(f'R-squared: {r2}')
73
+
74
+ if len(predictors) == 1:
75
+ fig, ax = plt.subplots()
76
+ ax.scatter(X_train[predictors[0]], y_train, color='blue', label='Training data')
77
+ ax.scatter(X_test[predictors[0]], y_test, color='green', label='Testing data')
78
+ ax.plot(X_test[predictors[0]], y_pred, color='red', linewidth=2, label='Regression line')
79
+ ax.set_xlabel(predictors[0])
80
+ ax.set_ylabel(target)
81
+ ax.set_title(f'Linear Regression: {predictors[0]} vs {target}')
82
+ ax.legend()
83
+ st.pyplot(fig)
84
+ else:
85
+ fig, ax = plt.subplots(figsize=(10, 6))
86
+ ax.scatter(y_test, y_pred, color='blue', label='Predicted vs Actual')
87
+ ax.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2, label='Ideal fit')
88
+ ax.set_xlabel('Actual ' + target)
89
+ ax.set_ylabel('Predicted ' + target)
90
+ ax.set_title('Multilinear Regression: Actual vs Predicted')
91
+ ax.legend()
92
+ st.pyplot(fig)
93
+ else:
94
+ st.write("Please upload a CSV file to proceed.")
95
+
96
+ if __name__ == "__main__":
97
+ main()