Spaces:
Sleeping
Sleeping
Create u_can_use_any_dataset.py
Browse files- u_can_use_any_dataset.py +97 -0
u_can_use_any_dataset.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
8 |
+
import io
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.title("Dynamic Regression Model App")
|
12 |
+
|
13 |
+
# File uploader for user dataset
|
14 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
15 |
+
|
16 |
+
if uploaded_file is not None:
|
17 |
+
df = pd.read_csv(uploaded_file)
|
18 |
+
st.write("## Data Sample")
|
19 |
+
st.write(df.head())
|
20 |
+
|
21 |
+
st.write("## Data Statistics")
|
22 |
+
st.write(df.describe())
|
23 |
+
|
24 |
+
st.write("## Data Info")
|
25 |
+
buffer = io.StringIO()
|
26 |
+
df.info(buf=buffer)
|
27 |
+
s = buffer.getvalue()
|
28 |
+
st.text(s)
|
29 |
+
|
30 |
+
st.write("## Missing Values")
|
31 |
+
st.write(df.isnull().sum())
|
32 |
+
|
33 |
+
# Drop target variable from the predictors list
|
34 |
+
columns = df.columns.tolist()
|
35 |
+
target = st.selectbox('Select the target variable for regression:', options=columns)
|
36 |
+
|
37 |
+
predictor_options = [col for col in columns if col != target]
|
38 |
+
|
39 |
+
# Add multiselect for user to choose predictor variables
|
40 |
+
predictors = st.multiselect(
|
41 |
+
'Select predictor variables for regression:',
|
42 |
+
options=predictor_options
|
43 |
+
)
|
44 |
+
|
45 |
+
if not predictors or not target:
|
46 |
+
st.error("Please select at least one predictor and a target variable.")
|
47 |
+
return
|
48 |
+
|
49 |
+
st.write("## Scatter Plot")
|
50 |
+
if len(predictors) == 1:
|
51 |
+
fig, ax = plt.subplots()
|
52 |
+
ax.scatter(df[predictors[0]], df[target])
|
53 |
+
ax.set_xlabel(predictors[0])
|
54 |
+
ax.set_ylabel(target)
|
55 |
+
ax.set_title(f'Relationship between {predictors[0]} and {target}')
|
56 |
+
st.pyplot(fig)
|
57 |
+
else:
|
58 |
+
st.write("Scatter plot is only available for a single predictor.")
|
59 |
+
|
60 |
+
# Regression analysis
|
61 |
+
X = df[predictors]
|
62 |
+
y = df[target]
|
63 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
64 |
+
model = LinearRegression()
|
65 |
+
model.fit(X_train, y_train)
|
66 |
+
y_pred = model.predict(X_test)
|
67 |
+
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
|
68 |
+
r2 = r2_score(y_test, y_pred)
|
69 |
+
|
70 |
+
st.write(f'## Regression Analysis')
|
71 |
+
st.write(f'RMSE: {rmse}')
|
72 |
+
st.write(f'R-squared: {r2}')
|
73 |
+
|
74 |
+
if len(predictors) == 1:
|
75 |
+
fig, ax = plt.subplots()
|
76 |
+
ax.scatter(X_train[predictors[0]], y_train, color='blue', label='Training data')
|
77 |
+
ax.scatter(X_test[predictors[0]], y_test, color='green', label='Testing data')
|
78 |
+
ax.plot(X_test[predictors[0]], y_pred, color='red', linewidth=2, label='Regression line')
|
79 |
+
ax.set_xlabel(predictors[0])
|
80 |
+
ax.set_ylabel(target)
|
81 |
+
ax.set_title(f'Linear Regression: {predictors[0]} vs {target}')
|
82 |
+
ax.legend()
|
83 |
+
st.pyplot(fig)
|
84 |
+
else:
|
85 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
86 |
+
ax.scatter(y_test, y_pred, color='blue', label='Predicted vs Actual')
|
87 |
+
ax.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2, label='Ideal fit')
|
88 |
+
ax.set_xlabel('Actual ' + target)
|
89 |
+
ax.set_ylabel('Predicted ' + target)
|
90 |
+
ax.set_title('Multilinear Regression: Actual vs Predicted')
|
91 |
+
ax.legend()
|
92 |
+
st.pyplot(fig)
|
93 |
+
else:
|
94 |
+
st.write("Please upload a CSV file to proceed.")
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
main()
|