import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score import io def main(): st.title("Dynamic Regression Model App") # File uploader for user dataset uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"]) if uploaded_file is not None: df = pd.read_csv(uploaded_file) st.write("## Data Sample") st.write(df.head()) st.write("## Data Statistics") st.write(df.describe()) st.write("## Data Info") buffer = io.StringIO() df.info(buf=buffer) s = buffer.getvalue() st.text(s) st.write("## Missing Values") st.write(df.isnull().sum()) # Drop target variable from the predictors list columns = df.columns.tolist() target = st.selectbox('Select the target variable for regression:', options=columns) predictor_options = [col for col in columns if col != target] # Add multiselect for user to choose predictor variables predictors = st.multiselect( 'Select predictor variables for regression:', options=predictor_options ) if not predictors or not target: st.error("Please select at least one predictor and a target variable.") return st.write("## Scatter Plot") if len(predictors) == 1: fig, ax = plt.subplots() ax.scatter(df[predictors[0]], df[target]) ax.set_xlabel(predictors[0]) ax.set_ylabel(target) ax.set_title(f'Relationship between {predictors[0]} and {target}') st.pyplot(fig) else: st.write("Scatter plot is only available for a single predictor.") # Regression analysis X = df[predictors] y = df[target] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) r2 = r2_score(y_test, y_pred) st.write(f'## Regression Analysis') st.write(f'RMSE: {rmse}') st.write(f'R-squared: {r2}') if len(predictors) == 1: fig, ax = plt.subplots() ax.scatter(X_train[predictors[0]], y_train, color='blue', label='Training data') ax.scatter(X_test[predictors[0]], y_test, color='green', label='Testing data') ax.plot(X_test[predictors[0]], y_pred, color='red', linewidth=2, label='Regression line') ax.set_xlabel(predictors[0]) ax.set_ylabel(target) ax.set_title(f'Linear Regression: {predictors[0]} vs {target}') ax.legend() st.pyplot(fig) else: fig, ax = plt.subplots(figsize=(10, 6)) ax.scatter(y_test, y_pred, color='blue', label='Predicted vs Actual') ax.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2, label='Ideal fit') ax.set_xlabel('Actual ' + target) ax.set_ylabel('Predicted ' + target) ax.set_title('Multilinear Regression: Actual vs Predicted') ax.legend() st.pyplot(fig) else: st.write("Please upload a CSV file to proceed.") if __name__ == "__main__": main()