Spaces:
Sleeping
Sleeping
File size: 3,587 Bytes
5c10ee6 11526c9 9cfd70d 5c10ee6 9cfd70d 5c10ee6 9cfd70d 11526c9 e852070 9cfd70d 5c10ee6 9cfd70d e852070 11526c9 5c10ee6 e852070 5c10ee6 e852070 11526c9 5c10ee6 d322c8d 5c10ee6 9cfd70d 11526c9 9cfd70d 5c10ee6 9cfd70d 5c10ee6 9cfd70d 5c10ee6 9cfd70d 11526c9 9cfd70d 5c10ee6 9cfd70d 5c10ee6 9cfd70d 5c10ee6 9cfd70d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import asyncio
import datetime
import os
import gradio as gr
import koil
import lm.lm.openai
import lm.log.arweaveditems
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODEL = lm.lm.openai.DEFAULT_MODEL
async def apredict(input):
timestamp = datetime.datetime.now().isoformat()
try:
api = lm.lm.openai.openai(api_key = OPENAI_API_KEY, model = MODEL)
except:
if model == lm.lm.openai.DEFAULT_MODEL:
model = 'gpt-4'
api = lm.lm.openai.openai(api_key = OPENAI_API_KEY, model = MODEL)
else:
raise
log = lm.lm.arweaveditems.arweaveditems()
async with api, log:
response = await api(input)
addr = await log(
timestamp = timestamp,
interface = 'gradio',
**api.metadata,
input = input,
output = response
)
print(addr)
return [addr, response]
def predict(input):
with koil.Koil() as Koil:
return koil.unkoil(apredict, input)
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">🔥GPT4 +🚀Arweave</h1>"""
description = """Provides GPT4 completions logged to arweave.
In this app, you can explore the outputs of a gpt-4 LLM.
"""
theme = gr.themes.Default(primary_hue="green")
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""",
theme=theme) as demo:
gr.HTML(title)
gr.HTML("""<h3 align="center">🔥This Huggingface Gradio Demo provides you access to GPT4 API. 🎉🥳🎉You don't need any OPENAI API key🙌</h1>""")
gr.HTML('''<center>Duplicate the space to provide a different api key, or donate your key to others in the community tab.</center>''')
with gr.Column(elem_id = "col_container"):
chatbot = gr.Chatbot(elem_id='chatbot') #c
inputs = gr.Textbox(label= "Type an input and press Enter") #t
state = gr.State([]) #s
with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button().style(full_width=True)
#with gr.Column(scale=3):
# server_status_code = gr.Textbox(label="Status code from OpenAI server", )
#inputs, top_p, temperature, top_k, repetition_penalty
#with gr.Accordion("Parameters", open=False):
#top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
#temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
#chat_counter = gr.Number(value=0, visible=False, precision=0)
#inputs.submit( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
inputs.submit(predict, [inputs], [chatbot])
#b1.click( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
b1.click(predict, [inputs], [chatbot])
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
#gr.Markdown(description)
demo.queue(max_size=20, concurrency_count=10).launch(debug=True)
|