Spaces:
Running
Running
File size: 18,853 Bytes
a15256b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
frontend_version = "2.2.3 240316"
from datetime import datetime
import gradio as gr
import json, os
import requests
import numpy as np
from string import Template
import wave
# 在开头加入路径
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append(os.path.join(now_dir, "Inference/src"))
# 取得模型文件夹路径
config_path = "Inference/config.json"
# 读取config.json
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as f:
_config = json.load(f)
locale_language = str(_config.get("locale", "auto"))
locale_language = None if locale_language.lower() == "auto" else locale_language
tts_port = _config.get("tts_port", 5000)
default_batch_size = _config.get("batch_size", 10)
default_word_count = _config.get("max_word_count", 80)
is_share = _config.get("is_share", "false").lower() == "true"
is_classic = _config.get("classic_inference", "false").lower() == "true"
enable_auth = _config.get("enable_auth", "false").lower() == "true"
users = _config.get("user", {})
try:
default_username = list(users.keys())[0]
default_password = users[default_username]
except:
default_username = "admin"
default_password = "admin123"
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto(locale_language , "Inference/i18n/locale")
language_list = ["auto", "zh", "en", "ja", "all_zh", "all_ja"]
translated_language_list = [i18n("auto"), i18n("zh"), i18n("en"), i18n("ja"), i18n("all_zh"), i18n("all_ja")] # 由于i18n库的特性,这里需要全部手输一遍
language_dict = dict(zip(translated_language_list, language_list))
cut_method_list = ["auto_cut", "cut0", "cut1", "cut2", "cut3", "cut4", "cut5"]
translated_cut_method_list = [i18n("auto_cut"), i18n("cut0"), i18n("cut1"), i18n("cut2"), i18n("cut3"), i18n("cut4"), i18n("cut5")]
cut_method_dict = dict(zip(translated_cut_method_list, cut_method_list))
tts_port = 5000
def load_character_emotions(character_name, characters_and_emotions):
emotion_options = ["default"]
emotion_options = characters_and_emotions.get(character_name, ["default"])
return gr.Dropdown(emotion_options, value="default")
from load_infer_info import get_wav_from_text_api, update_character_info, load_character, character_name, models_path
import soundfile as sf
import io
def send_request(
endpoint,
endpoint_data,
text,
cha_name,
text_language,
batch_size,
speed_factor,
top_k,
top_p,
temperature,
character_emotion,
cut_method,
word_count,
seed,
stream="False",
):
global character_name
global models_path
text_language = language_dict[text_language]
cut_method = cut_method_dict[cut_method]
if cut_method == "auto_cut":
cut_method = f"{cut_method}_{word_count}"
# Using Template to fill in variables
expected_path = os.path.join(models_path, cha_name) if cha_name else None
# 检查cha_name和路径
if cha_name and cha_name != character_name and expected_path and os.path.exists(expected_path):
character_name = cha_name
print(f"Loading character {character_name}")
load_character(character_name)
elif expected_path and not os.path.exists(expected_path):
gr.Warning("Directory {expected_path} does not exist. Using the current character.")
stream = stream.lower() in ('true', '1', 't', 'y', 'yes')
params = {
"text": text,
"text_language": text_language,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"character_emotion": character_emotion,
"cut_method": cut_method,
"stream": stream
}
# 如果不是经典模式,则添加额外的参数
if not is_classic:
params["batch_size"] = batch_size
params["speed_factor"] = speed_factor
params["seed"] = seed
gen = get_wav_from_text_api(**params)
sampling_rate, audio_data = next(gen)
wav = io.BytesIO()
sf.write(wav, audio_data, sampling_rate, format="wav")
wav.seek(0)
return sampling_rate, np.frombuffer(wav.read(), dtype=np.int16)
def stopAudioPlay():
return
global characters_and_emotions_dict
characters_and_emotions_dict = {}
def get_characters_and_emotions(character_list_url):
global characters_and_emotions_dict
# 直接检查字典是否为空,如果不是,直接返回,避免重复获取
if characters_and_emotions_dict == {}:
# 假设 update_character_info 是一个函数,需要传递 URL 参数
characters_and_emotions_dict = update_character_info()['characters_and_emotions']
print(characters_and_emotions_dict)
return characters_and_emotions_dict
def change_character_list(
character_list_url, cha_name="", auto_emotion=False, character_emotion="default"
):
characters_and_emotions = {}
try:
characters_and_emotions = get_characters_and_emotions(character_list_url)
character_names = [i for i in characters_and_emotions]
if len(character_names) != 0:
if cha_name in character_names:
character_name_value = cha_name
else:
character_name_value = character_names[0]
else:
character_name_value = ""
emotions = characters_and_emotions.get(character_name_value, ["default"])
emotion_value = character_emotion
if auto_emotion == False and emotion_value not in emotions:
emotion_value = "default"
except:
character_names = []
character_name_value = ""
emotions = ["default"]
emotion_value = "default"
characters_and_emotions = {}
if auto_emotion:
return (
gr.Dropdown(character_names, value=character_name_value, label=i18n("选择角色")),
gr.Checkbox(auto_emotion, label=i18n("是否自动匹配情感"), visible=False, interactive=False),
gr.Dropdown(["auto"], value="auto", label=i18n("情感列表"), interactive=False),
characters_and_emotions,
)
return (
gr.Dropdown(character_names, value=character_name_value, label=i18n("选择角色")),
gr.Checkbox(auto_emotion, label=i18n("是否自动匹配情感"),visible=False, interactive=False),
gr.Dropdown(emotions, value=emotion_value, label=i18n("情感列表"), interactive=True),
characters_and_emotions,
)
def change_endpoint(url):
url = url.strip()
return gr.Textbox(f"{url}/tts"), gr.Textbox(f"{url}/character_list")
def change_batch_size(batch_size):
try:
with open(config_path, "r", encoding="utf-8") as f:
_config = json.load(f)
with open(config_path, "w", encoding="utf-8") as f:
_config["batch_size"] = batch_size
json.dump(_config, f, ensure_ascii=False, indent=4)
except:
pass
return
def change_word_count(word_count):
try:
with open(config_path, "r", encoding="utf-8") as f:
_config = json.load(f)
with open(config_path, "w", encoding="utf-8") as f:
_config["max_word_count"] = word_count
json.dump(_config, f, ensure_ascii=False, indent=4)
except:
pass
return
default_request_url = f"http://127.0.0.1:{tts_port}"
default_character_info_url = f"{default_request_url}/character_list"
default_endpoint = f"{default_request_url}/tts"
default_endpoint_data = """{
"method": "POST",
"body": {
"cha_name": "${chaName}",
"character_emotion": "${characterEmotion}",
"text": "${speakText}",
"text_language": "${textLanguage}",
"batch_size": ${batch_size},
"speed": ${speed_factor},
"top_k": ${topK},
"top_p": ${topP},
"temperature": ${temperature},
"stream": "${stream}",
"cut_method": "${cut_method}",
"save_temp": "False"
}
}"""
default_text = i18n("我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样。")
information = ""
try:
with open("Information.md", "r", encoding="utf-8") as f:
information = f.read()
except:
pass
with gr.Blocks() as app:
gr.Markdown(information)
with gr.Row():
text = gr.Textbox(
value=default_text, label=i18n("输入文本"), interactive=True, lines=8
)
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab(label=i18n("基础选项")):
with gr.Group():
text_language = gr.Dropdown(
translated_language_list,
value=translated_language_list[0],
label=i18n("文本语言"),
)
with gr.Group():
(
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions_,
) = change_character_list(default_character_info_url)
characters_and_emotions = gr.State(characters_and_emotions_)
scan_character_list = gr.Button(i18n("扫描人物列表"), variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab(label=i18n("基础选项")):
gr.Textbox(
value=i18n("您在使用经典推理模式,部分选项不可用"),
label=i18n("提示"),
interactive=False,
visible=is_classic,
)
with gr.Group():
speed_factor = gr.Slider(
minimum=0.25,
maximum=4,
value=1,
label=i18n("语速"),
step=0.05,
visible=not is_classic,
)
with gr.Group():
cut_method = gr.Dropdown(
translated_cut_method_list,
value=translated_cut_method_list[0],
label=i18n("切句方式"),
visible=not is_classic,
)
batch_size = gr.Slider(
minimum=1,
maximum=35,
value=default_batch_size,
label=i18n("batch_size,1代表不并行,越大越快,但是越可能出问题"),
step=1,
visible=not is_classic,
)
word_count = gr.Slider(
minimum=5,maximum=500,value=default_word_count,label=i18n("每句允许最大切分字词数"),step=1, visible=not is_classic,
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab(label=i18n("高级选项")):
with gr.Group():
seed = gr.Number(
-1,
label=i18n("种子"),
visible=not is_classic,
interactive=True,
)
with gr.Group():
top_k = gr.Slider(minimum=1, maximum=30, value=6, label=i18n("Top K"), step=1)
top_p = gr.Slider(minimum=0, maximum=1, value=0.8, label=i18n("Top P"))
temperature = gr.Slider(
minimum=0, maximum=1, value=0.8, label=i18n("Temperature")
)
batch_size.release(change_batch_size, inputs=[batch_size])
word_count.release(change_word_count, inputs=[word_count])
cut_method.input(lambda x: gr.update(visible=(cut_method_dict[x]=="auto_cut")), [cut_method], [word_count])
with gr.Column(visible=False):
with gr.Tabs():
with gr.Tab(label=i18n("网址设置")):
gr.Textbox(
value=i18n("这是展示页面的版本,并未使用后端服务,下面参数无效。"),
label=i18n("提示"),
interactive=False,
)
request_url_input = gr.Textbox(
value=default_request_url, label=i18n("请求网址"), interactive=False
)
endpoint = gr.Textbox(
value=default_endpoint, label=i18n("Endpoint"), interactive=False
)
character_list_url = gr.Textbox(
value=default_character_info_url,
label=i18n("人物情感列表网址"),
interactive=False,
)
request_url_input.blur(
change_endpoint,
inputs=[request_url_input],
outputs=[endpoint, character_list_url],
)
with gr.Tab(label=i18n("认证信息"),visible=False):
gr.Textbox(
value=i18n("认证信息已启用,您可以在config.json中关闭。\n但是这个功能还没做好,只是摆设"),
label=i18n("认证信息"),
interactive=False
)
username = gr.Textbox(
value=default_username, label=i18n("用户名"), interactive=False
)
password = gr.Textbox(
value=default_password, label=i18n("密码"), interactive=False
)
with gr.Tab(label=i18n("json设置(一般不动)"),visible=False):
endpoint_data = gr.Textbox(
value=default_endpoint_data, label=i18n("发送json格式"), lines=10
)
with gr.Tabs():
with gr.Tab(label=i18n("请求完整音频")):
with gr.Row():
sendRequest = gr.Button(i18n("发送请求"), variant="primary")
audioRecieve = gr.Audio(
None, label=i18n("音频输出"), type="filepath", streaming=False
)
with gr.Tab(label=i18n("流式音频"),interactive=False,visible=False):
with gr.Row():
sendStreamRequest = gr.Button(
i18n("发送并开始播放"), variant="primary", interactive=True
)
stopStreamButton = gr.Button(i18n("停止播放"), variant="secondary")
with gr.Row():
audioStreamRecieve = gr.Audio(None, label=i18n("音频输出"), interactive=False)
gr.HTML("<hr style='border-top: 1px solid #ccc; margin: 20px 0;' />")
gr.HTML(
f"""<p>{i18n("这是一个由")} <a href="{i18n("https://space.bilibili.com/66633770")}">XTer</a> {i18n("提供的推理特化包,当前版本:")}<a href="https://www.yuque.com/xter/zibxlp/awo29n8m6e6soru9">{frontend_version}</a> {i18n("项目开源地址:")} <a href="https://github.com/X-T-E-R/TTS-for-GPT-soVITS">Github</a></p>
<p>{i18n("吞字漏字属于正常现象,太严重可尝试换行、加句号或调节batch size滑条。")}</p>
<p>{i18n("若有疑问或需要进一步了解,可参考文档:")}<a href="{i18n("https://www.yuque.com/xter/zibxlp")}">{i18n("点击查看详细文档")}</a>。</p>"""
)
# 以下是事件绑定
app.load(
change_character_list,
inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
]
)
sendRequest.click(lambda: gr.update(interactive=False), None, [sendRequest]).then(
send_request,
inputs=[
endpoint,
endpoint_data,
text,
cha_name,
text_language,
batch_size,
speed_factor,
top_k,
top_p,
temperature,
character_emotion,
cut_method,
word_count,
seed,
gr.State("False"),
],
outputs=[audioRecieve],
).then(lambda: gr.update(interactive=True), None, [sendRequest])
sendStreamRequest.click(
lambda: gr.update(interactive=False), None, [sendStreamRequest]
).then(
send_request,
inputs=[
endpoint,
endpoint_data,
text,
cha_name,
text_language,
batch_size,
speed_factor,
top_k,
top_p,
temperature,
character_emotion,
cut_method,
word_count,
seed,
gr.State("True"),
],
outputs=[audioStreamRecieve],
).then(
lambda: gr.update(interactive=True), None, [sendStreamRequest]
)
stopStreamButton.click(stopAudioPlay, inputs=[])
cha_name.change(
load_character_emotions,
inputs=[cha_name, characters_and_emotions],
outputs=[character_emotion],
)
character_list_url.change(
change_character_list,
inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
],
)
scan_character_list.click(
change_character_list,
inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
],
)
auto_emotion_checkbox.input(
change_character_list,
inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
],
)
app.launch(show_error=True, share=is_share, inbrowser=True)
|