File size: 18,853 Bytes
a15256b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
frontend_version = "2.2.3 240316"

from datetime import datetime
import gradio as gr
import json, os
import requests
import numpy as np
from string import Template
import  wave

# 在开头加入路径
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append(os.path.join(now_dir, "Inference/src"))

# 取得模型文件夹路径
config_path = "Inference/config.json"

# 读取config.json
if os.path.exists(config_path):
    with open(config_path, "r", encoding="utf-8") as f:
        _config = json.load(f)
        locale_language = str(_config.get("locale", "auto"))
        locale_language = None if locale_language.lower() == "auto" else locale_language
        tts_port = _config.get("tts_port", 5000)
        default_batch_size = _config.get("batch_size", 10)
        default_word_count = _config.get("max_word_count", 80)
        is_share = _config.get("is_share", "false").lower() == "true"
        is_classic = _config.get("classic_inference", "false").lower() == "true"
        enable_auth = _config.get("enable_auth", "false").lower() == "true"
        users = _config.get("user", {})
        try:
            default_username = list(users.keys())[0]
            default_password = users[default_username]
        except:
            default_username = "admin"
            default_password = "admin123"

from tools.i18n.i18n import I18nAuto
i18n = I18nAuto(locale_language , "Inference/i18n/locale")

language_list = ["auto", "zh", "en", "ja", "all_zh", "all_ja"]
translated_language_list = [i18n("auto"), i18n("zh"), i18n("en"), i18n("ja"), i18n("all_zh"), i18n("all_ja")] # 由于i18n库的特性,这里需要全部手输一遍
language_dict = dict(zip(translated_language_list, language_list))

cut_method_list = ["auto_cut", "cut0", "cut1", "cut2", "cut3", "cut4", "cut5"]
translated_cut_method_list = [i18n("auto_cut"), i18n("cut0"), i18n("cut1"), i18n("cut2"), i18n("cut3"), i18n("cut4"), i18n("cut5")]
cut_method_dict = dict(zip(translated_cut_method_list, cut_method_list))

tts_port = 5000



def load_character_emotions(character_name, characters_and_emotions):
    emotion_options = ["default"]
    emotion_options = characters_and_emotions.get(character_name, ["default"])

    return gr.Dropdown(emotion_options, value="default")




from load_infer_info import get_wav_from_text_api, update_character_info, load_character, character_name, models_path
import soundfile as sf
import io

def send_request(
    endpoint,
    endpoint_data,
    text,
    cha_name,
    text_language,
    batch_size,
    speed_factor,
    top_k,
    top_p,
    temperature,
    character_emotion,
    cut_method,
    word_count,
    seed,
    stream="False",
):
    global character_name
    global models_path
    text_language = language_dict[text_language]
    cut_method = cut_method_dict[cut_method]
    if cut_method == "auto_cut":
        cut_method = f"{cut_method}_{word_count}"
    # Using Template to fill in variables
    
    
    expected_path = os.path.join(models_path, cha_name) if cha_name else None

    # 检查cha_name和路径
    if cha_name and cha_name != character_name and expected_path and os.path.exists(expected_path):
        character_name = cha_name
        print(f"Loading character {character_name}")
        load_character(character_name)  
    elif expected_path and not os.path.exists(expected_path):
        gr.Warning("Directory {expected_path} does not exist. Using the current character.")

    
    
    stream = stream.lower() in ('true', '1', 't', 'y', 'yes')
    
    
    params = {
        "text": text,
        "text_language": text_language,
        
        "top_k": top_k,
        "top_p": top_p,
        "temperature": temperature,
        "character_emotion": character_emotion,
        "cut_method": cut_method,
        "stream": stream
    }
    # 如果不是经典模式,则添加额外的参数
    if not is_classic:
        params["batch_size"] = batch_size
        params["speed_factor"] = speed_factor
        params["seed"] = seed
    gen = get_wav_from_text_api(**params)
    sampling_rate, audio_data = next(gen)
    wav = io.BytesIO()
    sf.write(wav, audio_data, sampling_rate, format="wav")
    wav.seek(0)
    return sampling_rate, np.frombuffer(wav.read(), dtype=np.int16)
    

def stopAudioPlay():
    return


global characters_and_emotions_dict
characters_and_emotions_dict = {}

def get_characters_and_emotions(character_list_url):
    global characters_and_emotions_dict
    # 直接检查字典是否为空,如果不是,直接返回,避免重复获取
    if characters_and_emotions_dict == {}:
        # 假设 update_character_info 是一个函数,需要传递 URL 参数
        characters_and_emotions_dict = update_character_info()['characters_and_emotions']
        print(characters_and_emotions_dict)
   
    return characters_and_emotions_dict
    


def change_character_list(
    character_list_url, cha_name="", auto_emotion=False, character_emotion="default"
):

    characters_and_emotions = {}

    try:
        characters_and_emotions = get_characters_and_emotions(character_list_url)
        character_names = [i for i in characters_and_emotions]
        if len(character_names) != 0:
            if cha_name in character_names:
                character_name_value = cha_name
            else:
                character_name_value = character_names[0]
        else:
            character_name_value = ""
        emotions = characters_and_emotions.get(character_name_value, ["default"])
        emotion_value = character_emotion
        if auto_emotion == False and emotion_value not in emotions:
            emotion_value = "default"
    except:
        character_names = []
        character_name_value = ""
        emotions = ["default"]
        emotion_value = "default"
        characters_and_emotions = {}
    if auto_emotion:
        return (
            gr.Dropdown(character_names, value=character_name_value, label=i18n("选择角色")),
            gr.Checkbox(auto_emotion, label=i18n("是否自动匹配情感"), visible=False, interactive=False),
            gr.Dropdown(["auto"], value="auto", label=i18n("情感列表"), interactive=False),
            characters_and_emotions,
        )
    return (
        gr.Dropdown(character_names, value=character_name_value, label=i18n("选择角色")),
        gr.Checkbox(auto_emotion, label=i18n("是否自动匹配情感"),visible=False, interactive=False),
        gr.Dropdown(emotions, value=emotion_value, label=i18n("情感列表"), interactive=True),
        characters_and_emotions,
    )


def change_endpoint(url):
    url = url.strip()
    return gr.Textbox(f"{url}/tts"), gr.Textbox(f"{url}/character_list")


def change_batch_size(batch_size):
    try:
        with open(config_path, "r", encoding="utf-8") as f:
            _config = json.load(f)
        with open(config_path, "w", encoding="utf-8") as f:
            _config["batch_size"] = batch_size
            json.dump(_config, f, ensure_ascii=False, indent=4)
    except:
        pass
    return

def change_word_count(word_count):
    try:
        with open(config_path, "r", encoding="utf-8") as f:
            _config = json.load(f)
        with open(config_path, "w", encoding="utf-8") as f:
            _config["max_word_count"] = word_count
            json.dump(_config, f, ensure_ascii=False, indent=4)
    except:
        pass
    return


default_request_url = f"http://127.0.0.1:{tts_port}"
default_character_info_url = f"{default_request_url}/character_list"
default_endpoint = f"{default_request_url}/tts"
default_endpoint_data = """{
    "method": "POST",
    "body": {
        "cha_name": "${chaName}",
        "character_emotion": "${characterEmotion}",
        "text": "${speakText}",
        "text_language": "${textLanguage}",
        "batch_size": ${batch_size},
        "speed": ${speed_factor},
        "top_k": ${topK},
        "top_p": ${topP},
        "temperature": ${temperature},
        "stream": "${stream}",
        "cut_method": "${cut_method}",
        "save_temp": "False"
    }
}"""
default_text = i18n("我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样。")


information = ""

try:
    with open("Information.md", "r", encoding="utf-8") as f:
        information = f.read()
except:
    pass


with gr.Blocks() as app:
    gr.Markdown(information)
    with gr.Row():
        text = gr.Textbox(
            value=default_text, label=i18n("输入文本"), interactive=True, lines=8
        )
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab(label=i18n("基础选项")):
                    with gr.Group():
                        text_language = gr.Dropdown(
                            translated_language_list,
                            value=translated_language_list[0],
                            label=i18n("文本语言"),
                        )
                        
                    with gr.Group():
                        (
                            cha_name,
                            auto_emotion_checkbox,
                            character_emotion,
                            characters_and_emotions_,
                        ) = change_character_list(default_character_info_url)
                        characters_and_emotions = gr.State(characters_and_emotions_)
                        scan_character_list = gr.Button(i18n("扫描人物列表"), variant="secondary")

        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab(label=i18n("基础选项")):
                    gr.Textbox(
                        value=i18n("您在使用经典推理模式,部分选项不可用"),
                        label=i18n("提示"),
                        interactive=False,
                        visible=is_classic,
                    )
                    with gr.Group():
                        speed_factor = gr.Slider(
                            minimum=0.25,
                            maximum=4,
                            value=1,
                            label=i18n("语速"),
                            step=0.05,
                            visible=not is_classic,
                        )
                    with gr.Group():

                        cut_method = gr.Dropdown(
                            translated_cut_method_list,
                            value=translated_cut_method_list[0],
                            label=i18n("切句方式"),
                            visible=not is_classic,
                        )
                        batch_size = gr.Slider(
                            minimum=1,
                            maximum=35,
                            value=default_batch_size,
                            label=i18n("batch_size,1代表不并行,越大越快,但是越可能出问题"),
                            step=1,
                            visible=not is_classic,
                        )
                        word_count = gr.Slider(
                            minimum=5,maximum=500,value=default_word_count,label=i18n("每句允许最大切分字词数"),step=1, visible=not is_classic,
                        )

        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab(label=i18n("高级选项")):


                    with gr.Group():
                        seed = gr.Number(
                            -1,
                            label=i18n("种子"),
                            visible=not is_classic,
                            interactive=True,
                        )
                    
   
                    with gr.Group():
                        top_k = gr.Slider(minimum=1, maximum=30, value=6, label=i18n("Top K"), step=1)
                        top_p = gr.Slider(minimum=0, maximum=1, value=0.8, label=i18n("Top P"))
                        temperature = gr.Slider(
                            minimum=0, maximum=1, value=0.8, label=i18n("Temperature")
                        )
            batch_size.release(change_batch_size, inputs=[batch_size])
            word_count.release(change_word_count, inputs=[word_count])
            cut_method.input(lambda x: gr.update(visible=(cut_method_dict[x]=="auto_cut")),  [cut_method], [word_count])
        with gr.Column(visible=False):
            with gr.Tabs():

                with gr.Tab(label=i18n("网址设置")):
                    gr.Textbox(
                        value=i18n("这是展示页面的版本,并未使用后端服务,下面参数无效。"),
                        label=i18n("提示"),
                        interactive=False,
                    )
                    request_url_input = gr.Textbox(
                        value=default_request_url, label=i18n("请求网址"), interactive=False
                    )
                    endpoint = gr.Textbox(
                        value=default_endpoint, label=i18n("Endpoint"), interactive=False
                    )
                    character_list_url = gr.Textbox(
                        value=default_character_info_url,
                        label=i18n("人物情感列表网址"),
                        interactive=False,
                    )
                    request_url_input.blur(
                        change_endpoint,
                        inputs=[request_url_input],
                        outputs=[endpoint, character_list_url],
                    )
                with gr.Tab(label=i18n("认证信息"),visible=False):
                    gr.Textbox(
                        value=i18n("认证信息已启用,您可以在config.json中关闭。\n但是这个功能还没做好,只是摆设"),
                        label=i18n("认证信息"),
                        interactive=False
                    )
                    username = gr.Textbox(
                        value=default_username, label=i18n("用户名"), interactive=False
                    )
                    password = gr.Textbox(
                        value=default_password, label=i18n("密码"), interactive=False
                    )
                with gr.Tab(label=i18n("json设置(一般不动)"),visible=False):
                    endpoint_data = gr.Textbox(
                        value=default_endpoint_data, label=i18n("发送json格式"), lines=10
                    )
    with gr.Tabs():
        with gr.Tab(label=i18n("请求完整音频")):
            with gr.Row():
                sendRequest = gr.Button(i18n("发送请求"), variant="primary")
                audioRecieve = gr.Audio(
                    None, label=i18n("音频输出"), type="filepath", streaming=False
                )
        with gr.Tab(label=i18n("流式音频"),interactive=False,visible=False):
            with gr.Row():
                sendStreamRequest = gr.Button(
                    i18n("发送并开始播放"), variant="primary", interactive=True
                )
                stopStreamButton = gr.Button(i18n("停止播放"), variant="secondary")
            with gr.Row():
                audioStreamRecieve = gr.Audio(None, label=i18n("音频输出"), interactive=False)
    gr.HTML("<hr style='border-top: 1px solid #ccc; margin: 20px 0;' />")
    gr.HTML(
        f"""<p>{i18n("这是一个由")} <a href="{i18n("https://space.bilibili.com/66633770")}">XTer</a> {i18n("提供的推理特化包,当前版本:")}<a href="https://www.yuque.com/xter/zibxlp/awo29n8m6e6soru9">{frontend_version}</a>  {i18n("项目开源地址:")} <a href="https://github.com/X-T-E-R/TTS-for-GPT-soVITS">Github</a></p>
            <p>{i18n("吞字漏字属于正常现象,太严重可尝试换行、加句号或调节batch size滑条。")}</p>
            <p>{i18n("若有疑问或需要进一步了解,可参考文档:")}<a href="{i18n("https://www.yuque.com/xter/zibxlp")}">{i18n("点击查看详细文档")}</a>。</p>"""
    )
    # 以下是事件绑定
    app.load(
        change_character_list,
        inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
        outputs=[
            cha_name,
            auto_emotion_checkbox,
            character_emotion,
            characters_and_emotions,
        ]
    )            
    sendRequest.click(lambda: gr.update(interactive=False), None, [sendRequest]).then(
        send_request,
        inputs=[
            endpoint,
            endpoint_data,
            text,
            cha_name,
            text_language,
            batch_size,
            speed_factor,
            top_k,
            top_p,
            temperature,
            character_emotion,
            cut_method,
            word_count,
            seed,
            gr.State("False"),
        ],
        outputs=[audioRecieve],
    ).then(lambda: gr.update(interactive=True), None, [sendRequest])
    sendStreamRequest.click(
        lambda: gr.update(interactive=False), None, [sendStreamRequest]
    ).then(
        send_request,
        inputs=[
            endpoint,
            endpoint_data,
            text,
            cha_name,
            text_language,
            batch_size,
            speed_factor,
            top_k,
            top_p,
            temperature,
            character_emotion,
            cut_method,
            word_count,
            seed,
            gr.State("True"),
        ],
        outputs=[audioStreamRecieve],
    ).then(
        lambda: gr.update(interactive=True), None, [sendStreamRequest]
    )
    stopStreamButton.click(stopAudioPlay, inputs=[])
    cha_name.change(
        load_character_emotions,
        inputs=[cha_name, characters_and_emotions],
        outputs=[character_emotion],
    )
    character_list_url.change(
        change_character_list,
        inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
        outputs=[
            cha_name,
            auto_emotion_checkbox,
            character_emotion,
            characters_and_emotions,
        ],
    )
    scan_character_list.click(
        change_character_list,
        inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
        outputs=[
            cha_name,
            auto_emotion_checkbox,
            character_emotion,
            characters_and_emotions,
        ],
    )
    auto_emotion_checkbox.input(
        change_character_list,
        inputs=[character_list_url, cha_name, auto_emotion_checkbox, character_emotion],
        outputs=[
            cha_name,
            auto_emotion_checkbox,
            character_emotion,
            characters_and_emotions,
        ],
    )


app.launch(show_error=True, share=is_share, inbrowser=True)