Genshin_S-Z / GPT_SoVITS /TTS_infer_pack /TextPreprocessor.py
白菜工厂1145号员工
Automated commit from batch script
a15256b
raw
history blame
7.79 kB
import os, sys
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
import re
import torch
import LangSegment
from typing import Dict, List, Tuple
from text.cleaner import clean_text
from text import cleaned_text_to_sequence
from transformers import AutoModelForMaskedLM, AutoTokenizer
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
def get_first(text:str) -> str:
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def merge_short_text_in_array(texts:str, threshold:int) -> list:
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if (len(text) > 0):
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
class TextPreprocessor:
def __init__(self, bert_model:AutoModelForMaskedLM,
tokenizer:AutoTokenizer, device:torch.device):
self.bert_model = bert_model
self.tokenizer = tokenizer
self.device = device
def preprocess(self, text:str, lang:str, text_split_method:str)->List[Dict]:
print(i18n("############ 切分文本 ############"))
texts = self.pre_seg_text(text, lang, text_split_method)
result = []
print(i18n("############ 提取文本Bert特征 ############"))
for text in tqdm(texts):
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang)
if phones is None:
continue
res={
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
}
result.append(res)
return result
def pre_seg_text(self, text:str, lang:str, text_split_method:str):
text = text.strip("\n")
if (text[0] not in splits and len(get_first(text)) < 4):
text = "。" + text if lang != "en" else "." + text
print(i18n("实际输入的目标文本:"))
print(text)
if text_split_method.startswith("auto_cut"):
try:
max_word_count = int(text_split_method.split("_")[-1])
except:
max_word_count = 20
if max_word_count < 5 or max_word_count > 1000:
max_word_count = 20
text_split_method = "auto_cut"
seg_method = get_seg_method(text_split_method)
text = seg_method(text, max_word_count)
else:
seg_method = get_seg_method(text_split_method)
text = seg_method(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
_texts = text.split("\n")
_texts = merge_short_text_in_array(_texts, 5)
texts = []
for text in _texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
if (text[-1] not in splits): text += "。" if lang != "en" else "."
# 解决句子过长导致Bert报错的问题
if (len(text) > 510):
texts.extend(split_big_text(text))
else:
texts.append(text)
print(i18n("实际输入的目标文本(切句后):"))
print(texts)
return texts
def segment_and_extract_feature_for_text(self, texts:list, language:str)->Tuple[list, torch.Tensor, str]:
textlist, langlist = self.seg_text(texts, language)
if len(textlist) == 0:
return None, None, None
phones, bert_features, norm_text = self.extract_bert_feature(textlist, langlist)
return phones, bert_features, norm_text
def seg_text(self, text:str, language:str)->Tuple[list, list]:
textlist=[]
langlist=[]
if language in ["auto", "zh", "ja"]:
LangSegment.setfilters(["zh","ja","en","ko"])
for tmp in LangSegment.getTexts(text):
if tmp["text"] == "":
continue
if tmp["lang"] == "ko":
langlist.append("zh")
elif tmp["lang"] == "en":
langlist.append("en")
else:
# 因无法区别中日文汉字,以用户输入为准
langlist.append(language if language!="auto" else tmp["lang"])
textlist.append(tmp["text"])
elif language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
while " " in formattext:
formattext = formattext.replace(" ", " ")
if formattext != "":
textlist.append(formattext)
langlist.append("en")
elif language in ["all_zh","all_ja"]:
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
language = language.replace("all_","")
if text == "":
return [],[]
textlist.append(formattext)
langlist.append(language)
else:
raise ValueError(f"language {language} not supported")
return textlist, langlist
def extract_bert_feature(self, textlist:list, langlist:list):
phones_list = []
bert_feature_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang)
_bert_feature = self.get_bert_inf(phones, word2ph, norm_text, lang)
# phones_list.append(phones)
phones_list.extend(phones)
norm_text_list.append(norm_text)
bert_feature_list.append(_bert_feature)
bert_feature = torch.cat(bert_feature_list, dim=1)
# phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones_list, bert_feature, norm_text
def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:
with torch.no_grad():
inputs = self.tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(self.device)
res = self.bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def clean_text_inf(self, text:str, language:str):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_inf(self, phones:list, word2ph:list, norm_text:str, language:str):
language=language.replace("all_","")
if language == "zh":
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
else:
feature = torch.zeros(
(1024, len(phones)),
dtype=torch.float32,
).to(self.device)
return feature